

Proceedings of the Second Workshop

on Annotation of Corpora for Research in the Humanities
(ACRH-2)

29 November 2012
 Lisbon, Portugal

Editors:

Francesco Mambrini
Marco Passarotti

Caroline Sporleder

Title: Proceedings of the Second Workshop
on Annotation of Corpora for Research in the Humanities

(ACRH-2)

Editors: Francesco Mambrini, Marco Passarotti,

Caroline Sporleder

Cover photograph: Pedro Salitre

ISBN 978-989-689-273-9

Depósito legal n.º 351 423/12

Publisher: Edições Colibri, Lisboa
www.edi-colibri.pt

Sponsors:

Faculdade de Letras

da Universidade de Lisboa

Lisbon, November 2012

 III

Preface

Research in the Humanities is predominantly text-based. For centuries

scholars have studied documents such as historical manuscripts, literary

works, legal contracts, diaries of important personalities, old tax records etc.

Manual analysis of such documents is still the dominant research paradigm in

the Humanities. However, with the advent of the digital age this is

increasingly complemented by approaches that utilise digital resources. More

and more corpora are made available in digital form (theatrical plays,

contemporary novels, critical literature, literary reviews etc.). This has a

potentially profound impact on how research is conducted in the Humanities.

Digitised sources can be searched more easily than traditional, paper-based

sources, allowing scholars to analyse texts quicker and more systematically.

Moreover, digital data can also be (semi-)automatically mined: important

facts, trends and interdependencies can be detected, complex statistics can be

calculated and the results can be visualised and presented to the scholars, who

can then delve further into the data for verification and deeper analysis.

Digitisation encourages empirical research, opening the road for completely

new research paradigms that exploit `big data' for humanities research. This

has also given rise to Digital Humanities (or E-Humanities) as a new research

area.

Digitisation is only a first step, however. In their raw form, electronic corpora

are of limited use to humanities researchers. The true potential of such

resources is only unlocked if corpora are enriched with different layers of

linguistic annotation (ranging from morphology to semantics). While corpus

annotation can build on a long tradition in (corpus) linguistics and

computational linguistics, corpus and computational linguistics on the one

side and the Humanities on the other side have grown apart over the past

decades. We believe that a tighter collaboration between people working in

the Humanities and the research community involved in developing

annotated corpora is now needed because, while annotating a corpus from

scratch still remains a labor-intensive and time-consuming task, today this is

simplified by intensively exploiting prior experience in the field. Indeed, such

a collaboration is still quite far from being achieved, as a gap still holds

between computational linguists (who sometimes do not involve humanists in

 IV

developing and exploiting annotated corpora for the Humanities) and

humanists (who sometimes just ignore that such corpora do exist and that

automatic methods and standards to build them are today available).

ACRH-2 aims to foster communication and collaboration between these two

groups, in the same way that its predecessor ACRH-12 did. ACRH-12 was

held at Heidelberg University on January 5, 2012, in conjunction with the

10th edition of the international workshop on "Treebanks and Linguistic

Theories" (TLT-10). ACRH-2 is again co-located with TLT, this time at the

University of Lisbon. We received thirteen submissions for ACRH-2. After a

thorough reviewing process eight submissions were included in the

workshop, addressing several important issues related to corpus annotation

for the Humanities.

The papers in the proceedings concern several different topics. The task of

resource creation is tackled by Koeva et al., who present an aligned parallel

Bulgarian-English corpus for linguistic research, and Ferreira et al., who

introduce a novel framework for annotating corpora with a particular focus

on language documentation. Four papers are concerned with corpora of

historical texts which pose particular challenges for language processing

software. A major problem are spelling variations. Detecting and normalising

these is addressed by two papers: Bollmann test several string distance

methods for Early New High German, while Reynaert et al. compare two

state-of-the-art error detection systems on old Portuguese. Historical texts

also often lack consistent punctuation, which poses difficulties for automatic

segmentation into linguistic units. The paper by Petran presents a method for

segmenting texts that lack punctuation marks into sentences, clauses and

chunks. In turn, Bouma and Hermans introduce an algorithm for

syllabification in Middle Dutch text. Finally, two papers are concerned with

deeper processing problems. Both focus on folktale corpora. Everhardus et al.

present an approach for normalisation and consistency checking in semi-

structured corpora, while Karsdorp et al. address the task of identifying actors

and ranking them by importance. The workshop programme is completed by

an invited lecture by Martin Wynne, who heads the Oxford Text Archive and

has worked extensively in the areas of corpus linguistics and corpus

infrastructure development.

We are grateful to everybody who made this event possible, including Erhard

Hinrichs, the local and non-local organisers of TLT-11 (in particular Iris

Hendrickx), the ACRH-2 programme committee, and the authors who

submitted papers. We also acknowledge the endorsement of the AMICUS

network.

The ACRH-2 Co-Chairs and Organisers

Francesco Mambrini (University of Cologne, Germany)

Marco Passarotti (Università Cattolica del Sacro Cuore, Milan, Italy)

Caroline Sporleder (Trier University, Germany)

 V

Program Committee

Chairs:

Francesco Mambrini (University of Cologne, Germany)

Marco Passarotti (Università Cattolica del Sacro Cuore, Milan, Italy)

Caroline Sporleder (Trier University, Germany)

Members:

David Bamman (USA)

Gabriel Bodard (UK)

Lars Borin (Sweden)

Antonio Branco (Portugal)

Milena Dobreva (Malta)

Anette Frank (Germany)

Dag Haug (Norway)

Erhard Hinrichs (Germany)

Beáta Megyesi (Sweden)

Petya Osenova (Bulgaria)

Martin Reynaert (the Netherlands)

Victoria Rosén (Norway)

Jeff Rydberg Cox (USA)

Melissa Terras (UK)

Manfred Thaller (Germany)

Martin Volk (Switzerland)

 VI

Organising Committee

Chairs:

Francesco Mambrini (University of Cologne, Germany)

Marco Passarotti (Università Cattolica del Sacro Cuore, Milan, Italy)

Caroline Sporleder (Trier University, Germany)

Local Committee:

Amalia Mendes

Iris Hendrickx

Sandra Antunes

Aida Cardoso

Sandra Pereira

all University of Lisbon, CLUL, Portugal

 VII

Contents

Do we need annotated corpora in the era of the data deluge?

Martin Wynne 1

(Semi-)Automatic Normalization of Historical Texts using Distance

Measures and the Norma tool

Marcel Bollmann 3

Poio API - An annotation framework to bridge Language

Documentation and Natural Language Processing

Peter Bouda, Vera Ferreira, & António Lopes 15

Syllabification of Middle Dutch

Gosse Bouma & Ben Hermans 27

Casting a Spell: Identification and Ranking of Actors in Folktales

Folgert Karsdorp, Peter van Kranenburg, Theo Meder, & Antal van

den Bosch

39

Bulgarian-English Sentence- and Clause-Aligned Corpus

Svetla Koeva, Borislav Rizov, Ekaterina Tarpomanova, Tsvetana

Dimitrova, Rositsa Dekova, Ivelina Stoyanova, Svetlozara Leseva,

Hristina Kukova, & Angel Genov

51

Cleaning up and Standardizing a Folktale Corpus for Humanities

Research

Iwe Everhardus Christiaan Muiser, Mariët Theune, & Theo Meder 63

Studies for Segmentation of Historical Texts: Sentences or Chunks?

Florian Petran 75

Historical spelling normalization. A comparison of two statistical

methods: TICCL and VARD2

Martin Reynaert, Iris Hendrickx, & Rita Marquilhas 87

Do we need annotated corpora

in the era of the data deluge?

Martin Wynne

University of Oxford, UK

E-mail: martin.wynne@oucs.ox.ac.uk

Abstract

Language corpora were originally developed as datasets for linguistic research, in

a world where researchers rarely had access to machine-readable language data.

Corpus linguistics subsequently developed methodologies based on discrete,

bounded datasets, created to represent certain types of language use, and studied

as exemplars of that domain. The growth of the field and advances in technology

meant that corpora became bigger and more plentiful and various, with huge

reference corpora for a vast range of languages and time periods, and numerous

specialist corpora. Researchers in many other fields have found that corpora are

rich repositories of data about not only language but also culture, society, politics,

etc.. Annotation has been widely used, initially by linguists, but also by

researchers in other fields to categorize, interpretate and analyse texts, and to aid

information retrieval and data linking.

Nowadays, the enormous wealth of digital language data at our fingertips brings

the role of the corpus into question. Born-digital data, along with large-scale

digitization of historical texts, are delivering the cultural products of the both the

present and the past directly to our desktops. We can relatively easily make

bespoke datasets for different research questions. The boundaries between the

corpus and other type of data are becoming blurred. Can we still justify spending

our time carefully crafting and annotating corpora today?

There is a danger that adding annotation is too time-consuming and costly, and

forces us into using smaller and older datasets, and only starting our research after

they have been painstakingly annotated. Furthermore, there is a lack of generic

software which can make use of annotations, and so we build separate web

interfaces for each annotated corpus. This leads to the now-familiar problem of

the creation of digital silos - isolated from other corpora and tools, limited in

functionality, and each with a different interface. Thus it can be argued that

adding annotation to a corpus also adds to the problem of fragmentation of digital

resources in the humanities.

 1

These new difficulties come along at a time when we continue to wrestle with

longstanding problems with annotation:

- How do we avoid the circularity of adding annotations and then counting and

analysing them ourselves - “finding the Easter eggs that you hid in the

garden yourself”?

- Will two humanists ever agree on the relevance or usefulness of any given

annotation scheme, or the accuracy of any instantiation of it?

- Can automatic annotation be accurate enough to be useful to the humanities

scholar?

- Do we risk ignoring the actual data itself by focussing on our interpretations

and annotations?

The era of the data deluge poses additional questions. Do we now need to explore

how far can we go in our research without carefuly crafted, annotated corpora? Or

do we need better and faster tools to add automatic annotations to the deluge of

data? Or will initiatives such as CLARIN make it easier to use a wide range of

annotated corpora on common platforms?

 2

(Semi-)Automatic Normalization of Historical
Texts using Distance Measures and the Norma tool

Marcel Bollmann

Department of Linguistics
Ruhr-Universität Bochum

E-mail: bollmann@linguistics.rub.de

Abstract

Historical texts typically show a high degree of variance in spelling. Normal-
ization of variant word forms to their modern spellings can greatly benefit
further processing of the data, e.g., POS tagging or lemmatization. This
paper compares several approaches to normalization with a focus on methods
based on string distance measures and evaluates them on two different types
of historical texts. Furthermore, the Norma tool is introduced, an interac-
tive normalization tool which is flexibly adaptable to different varieties of
historical language data. It is shown that a combination of normalization
methods produces the best results, achieving an accuracy between 74% and
94% depending on the type of text.

1 Introduction1

Historical language data poses a difficult challenge for natural language processing.
One of the biggest problems is the lack of standardized writing conventions: the
exact characters and symbols used to spell a word can depend on many differ-
ent factors such as dialectal influences, space constraints on a page, or personal
preferences of the writer. Consequently, while annotation tasks such as part-of-
speech (POS) tagging are well explored for modern languages, with reported accu-
racies as high as 97% (Brants [5]), the same cannot be said for historical varieties.
In a study done on Early New High German (Scheible et al. [12]), tagging ac-
curacies using taggers trained on modern German were below 70%. A possible
solution is a pre-processing step during which word forms are converted to their
modern spellings, which the same study found to increase tagging accuracy by
10 percentage points. This process will be referred to here as ‘normalization’.

1The research reported here was financed by Deutsche Forschungsgemeinschaft (DFG), Grant
DI 1558/4-1.

 3

When creating a corpus of historical texts, manually normalizing all data can
be a tedious and time-consuming process. Furthermore, despite the many inconsis-
tencies, spelling is typically not arbitrary, and many regularities can still be found.
In Early New High German (ENHG), typical examples are ‘v’ for (modern) ‘u’,
as in vnd – und ‘and’, or ‘y’ for (modern) ‘i’, as in seyn – sein ‘be’. This leads
to the question of how the process of normalization can be automated. Several
methods for automatic normalization have been proposed (some of the more recent
ones are, e.g., Baron et al. [3], Jurish [9], Bollmann et al. [4]), though no clear
“best” method has been identified. On the contrary, it is unclear to which extent
the results are even comparable, as the amount and degree of spelling variance can
be expected to differ greatly between texts. At the same time, this variance suggests
the need for normalization methods which are flexibly adaptable to different types
of texts.

This paper addresses these issues in two ways: (1) by comparing different
normalization methods that can be flexibly trained to handle different spelling
varieties; and (2) by presenting the interactive normalization tool Norma, which
provides a framework to combine, train, and compare different methods of nor-
malization.

The structure of this paper is as follows. Sec. 2 presents a rule-based method
for normalization, while Sec. 3 describes a normalization approach based on string
distance measures. Sec. 4 introduces the Norma tool. In Sec. 5, all presented nor-
malization methods are evaluated on two different types of historical texts. Sec. 6
discussed the comparable VARD tool, Sec. 7 presents related work and further
conceivable approaches to the normalization task, and Sec. 8 concludes.

2 Rule-Based Method

Rule-based normalization will be used as a comparison to the distance measures
described in Sec. 3. Its main concepts are only briefly summarized here; a detailed
description can be found in Bollmann et al. [4].

The rule-based method applies a set of character rewrite rules to a historical
input string in order to produce its normalized variant. Rewrite rules operate on
one or more characters and take their immediate context into account; an example
rule is shown in Ex. (1).

(1) j → ih / # _ r
(‘j’ is replaced by ‘ih’ between a word boundary (‘#’) and ‘r’)

The rules are not meant to be specified manually, but are supposed to be learned
from training data (using a modified Levenshtein algorithm). To normalize an input
string, it is processed from left to right, with one rewrite rule being applied at each
position. Typically, there will be several applicable rules at each given position;
in this case, the frequency of a rule during training determines how likely it is to
be used during the normalization process. In case there is no applicable rule, the

 4

default is to leave the character at that position unchanged. Additionally, to prevent
the generation of nonsense words, all normalization candidates are matched against
a target lexicon. Therefore, it is possible that the rule-based method sometimes fails
to find any normalization candidate at all.

3 Distance Measures

Levenshtein distance between two strings is defined as the number of substitutions,
insertions, and deletions required to transform one string into the other (Leven-
shtein [11]). More generally, the term “distance measure” will be used here to
describe any function that accepts a pair of strings and returns a positive, numeric
value describing their distance.

Any distance measure can theoretically be used for the purpose of normaliza-
tion. Given a (finite) lexicon of modern word forms, the distance of a historical
input word form to each entry in the modern lexicon can be calculated; the word
form with the lowest distance to the input string is then chosen as the normaliza-
tion.2

3.1 FlexMetric

FlexMetric (Kempken [10]) is a measure originally designed for rating historical
and dialectal spelling variants, which makes it appear ideal for the normalization
task. It is supposed to be flexible in the sense that it can easily be adapted to
different types of text and language varieties. This is achieved by using a variant of
Levenshtein distance with weights, where instead of simply counting the number of
edit operations, each such operation is assigned a weight w (also called “cost”) with
0 < w ≤ 1. Weights can be individually defined; if w = 1 for all edit operations,
this approach is identical to standard Levenshtein distance.

However, instead of allowing arbitrary weights, FlexMetric introduces the con-
cept of character groups, which contain characters that are closely related to each
other. Conceivable groupings for German are, e.g., {s, z, ß} or {i, y}. These
groups are then assigned individual costs, which in turn define the cost of character
substitutions within that same group. Substitutions of characters that do not belong
to the same group are assigned a default cost of 1. Note that this approach induces
a symmetry: the substitution i→ y always costs the same as y→ i.

Additionally, in the extended version of the algorithm, which is used here,
multiple occurrences of the same character are ignored—e.g., the transformation
n→ nn (and vice versa) always has a cost of 0.

The relative simplicity of this approach is deliberate; the intention was to allow
for the creation of a good parametrization by manual inspection of a small portion
of the input data and without too much effort (Kempken [10], p. 61). Again,
this seems well-suited for normalization, as historical data typically shows a lot

2In practice, finding an efficient algorithm for this operation can be a limiting factor, though.

 5

of variety between texts, requiring an easily adaptable normalization method, and
training data is typically not available (or not in large amounts).

3.2 MultiWLD

In the Luther text used for evaluation (cf. Sec. 5), the substitution v→ u is by far
the most common one; however, the opposite direction, u → v, is comparatively
rare. This leads to the question whether costs should actually be defined in a
symmetric way. Furthermore, it is questionable whether characters should be
treated in isolation: e.g., ‘ck’ often occurs for modern ‘k’, as in werck – werk
‘work’, and does not represent a different phoneme. Treating this example simply
as a deletion of ‘c’ would be a case of overgeneralization, though. Many similar
examples for German can be found (mb→ m, i→ ie, a→ ah, etc.).

These considerations led to the MultiWLD3 algorithm. It is supposed to be
similar to FlexMetric in the sense that costs should be easily definable by intu-
ition and/or manual inspection of a small input sample, but differs in the aspects
mentioned above: (1) it is directional (instead of symmetric); and (2) it allows the
definition of substitutions with more than one character on either side.

Although these changes draw nearer to the idea of the rule-based approach (cf.
Sec. 2), there are two important differences to keep in mind. Firstly, the distance
measures described here only assign a cost to actual modifications to the input
string; i.e., it is always preferred that a character is left unchanged, which is not the
case in the rule-based method. Secondly, while the definition of multi-character
substitutions introduces a form of context-sensitivity (e.g., a→ ah represents the
insertion of ‘h’ after ‘a’), it is up to the creator of the parametrisation how much and
which context, if any, to include in each rule. In contrast, the rule-based approach
always requires exactly one character on each side as context.

4 The Norma tool

Norma is a tool for (semi-)automatic normalization of historical language data. It
can be used both interactively and non-interactively, and is intended to be flexible
in the sense that it is not restricted to any particular method(s) of normalization.
Normalization methods—or “normalizers”—are encapsulated in external modules
for easy extensibility. Parameter sets of normalizers can be dynamically retrained
during the normalization process if the normalizer supports it. This way, Norma
supports an incremental learning approach to normalization.

Norma is written in Python 2.7.4 At the time of writing, only a command-line
interface is available.

3MultiWLD = Weighted Levenshtein Distance with multi-character substitutions
4http://www.python.org/

 6

4.1 Modes of operation

Norma supports three modes of operation: batch, interactive, and training mode.
In batch mode, Norma takes an input file consisting of one historical word form

per line and, for each line, outputs the suggested normalization of that word form.
Interactive mode works the same way as batch mode, but prompts the user with

each generated normalization, which he or she can either confirm or correct. The
resulting pair of historic and (confirmed) modern word form is then used to train
the normalizers. Ideally, the number of corrections the user has to make should
decrease over time as the normalizers are supplied with more training data and can
adjust their set of parameters accordingly.

Finally, there is a training mode, which works similarly to interactive mode
except that the confirmed modern word form is not entered by the user, but given
in the input file itself. Apart from training normalizers from a set of manually nor-
malized data, this mode can also be used to “simulate” the interactive normalization
process, e.g. to evaluate the effect of incremental learning.

4.2 Normalizer modules

Norma itself does not implement any normalization or learning techniques, but
rather depends on external normalizer modules to provide that functionality.

Normalizers exchange data with Norma via a certain, pre-defined interface of
functions. The normalization function is given a historical word form as input
and should return its normalized form along with a confidence score. Confidence
scores are numerical values between 0 and 1; a score of 0 is taken to mean that
no suitable normalization could be found at all. The training function is given a
historical word form along with its modern counterpart and is expected to trigger
the normalizer’s training algorithm.

4.3 Normalization cycle

The normalization process in Norma can be described as a cycle consisting of the
following steps:

1. fetching a historical input word form;

2. generating a normalization candidate for the historical word form using one
or more normalizers;

3. validating the candidate word form against the correct normalization; and

4. training the normalizers with the historical word form and its correct nor-
malization.

This cycle is repeated until all input word forms have been processed. If training is
disabled or impossible, e.g. when batch-processing texts, the last two steps will do
nothing. Fig. 1 shows a flow diagram visualizing the normalization cycle.

 7

Input

Norm. 1 Norm. 2 . . . Norm. n

Validation

Training

historical
word form

generated
word form

validated
word form

Figure 1: Flow diagram of a normalization cycle (with training) in Norma

The first step is the retrieving of a historical word form as input. Typically, this
will be read from a text file, from which lines are processed in sequential order.

The second step in the cycle is the actual normalization process. It is modelled
as a chain: at the beginning, the first normalizer in the chain is called and supplied
with the historical word form; if it finds a suitable normalization with a confidence
score above a pre-defined threshold, the chain is interrupted and processing con-
tinues with the next step (indicated in Fig. 1 by the dotted-line arrows). Otherwise,
the next normalizer in the chain is called. If all normalizers fail to produce an
acceptable result, the unmodified original word form is used as the normalization
candidate.

Afterwards, the normalization candidate is validated against the correct nor-
malization. In interactive mode, the user is prompted to either confirm the can-
didate form or correct it, while in training mode, the correct form is read directly
from the input file.

As the last step of the cycle, the training function of all normalizers is called,
with the historic word form and its (confirmed) modern equivalent as input. After
the normalizers have been trained, the cycle starts anew.

5 Evaluation

5.1 Corpora

For the evaluation, two different texts from ENHG were used: (1) the Luther bible
in its version from 1545 and a revised modern version of it; and (2) a manuscript
of the Anselm corpus from the Eastern Upper Germany dialectal area5 that was
manually normalized by a student assistant. A more detailed description is given
in Bollmann et al. [4].

5The depository of the manuscript is Melk, Austria.

 8

Luther Anselm

Training Total tokens 218,504 — 500 —

Evaluation
Total tokens 109,258 (100.00%) 4,020 (100.00%)

Identical tokens 71,163 (65.13%) 1,512 (37.61%)
Maximum accuracy 103,409 (94.65%) 3,760 (93.53%)

Table 1: General corpus statistics, split up by training and evaluation part.
“Identical tokens” are counted between the original text and its modern version;
“maximum accuracy” gives the highest accuracy that can be achieved with context-
free normalization methods.

Table 1 shows some general corpus statistics. The Luther bible is a com-
paratively large text, with 109,258 tokens in the evaluation part, and is relatively
close to its modern version: 65% of all tokens in the historical version are already
identical to their modern counterparts. This figure serves as the baseline for the
evaluation. The Anselm text, on the other hand, is much smaller (4,020 tokens)
and shows a lot more variance in spelling. While the size of the Luther text—
and the training part in particular—makes it more suitable for training automatic
normalization methods, the Anselm text is closer to actual research scenarios: texts
with a high variance in spelling, and without a reasonable amount of training data
available (if any).

It is also interesting to note the maximum achievable accuracy, which is around
94% for both texts. All methods evaluated in this paper are context-free, i.e., they
operate on word forms in isolation. Consequently, source tokens of the same type
will be assigned identical normalizations. However, the same type can be aligned
with more than one target token: a typical example is the historical jn mapped to
either in ‘in’ or ihn ‘him’, depending on context. In this case, it is impossible to
achieve perfect accuracy using context-free methods. Therefore, the “maximum
accuracy” in Table 1 represents the accuracy that would be achieved if each type
was normalized to the token it is most often aligned with.

5.2 Evaluation procedure

Five normalization methods were evaluated: rule-based normalization (Sec. 2),
standard Levenshtein distance (Sec. 3), FlexMetric (Sec. 3.1), MultiWLD (Sec. 3.2),
and a wordlist mapper. The mapper simply learns word-to-word substitutions from
training data without any notion of character distance. If a word form can be
mapped to multiple modern word forms, the mapping with the highest frequency
is used; in case of a tie, the mapping that was learned first is chosen.

Parametrization for the rule-based method and the wordlist mapper has been
learned from separate training parts of the texts as shown in Table 1. For FlexMetric
and MultiWLD, parametrization was created by hand after inspection of at most

 9

500 tokens from the training part of each text. As an example, characters groups
learned from Luther that were assigned the lowest costs are {u, v} and {i, j}, while
the most common insertions/deletion were of ‘e’ and ‘h’. This method is, of course,
a highly subjective one and should only be seen as a first experiment on whether
a reasonable parametrization can be created by manual inspection of a small text
fragment alone.

For the target lexicon, I used the complete vocabulary of the modern Luther
bible complemented by a full-form lexicon of all simplices generated by the Ger-
man morphology DMOR (Schiller [13]).

In addition to the separate evaluation of each method, each possible chain
combination (cf. p.) has been evaluated. Threshold for confidence scores was
set to 0, i.e., unless the normalizer failed to find a normalization, any generated
normalization candidate was accepted as the final result. As a consequence, chains
in this test setup can consist of three elements at maximum, as the distance-based
measures can never fail to find a normalization candidate.

All methods have been implemented as normalizer modules for Norma (cf.
Sec. 4.2). Evaluation was done using Norma’s training mode to produce parameter
files for the rule-based method and the wordlist mapper, and batch mode to process
the evaluation texts.

5.3 Results

Evaluation results are shown in Table 2. For the Luther text, the simple wordlist
mapper performs best in isolation, achieving an accuracy of 92.60%, with the
rule-based approach and MultiWLD being only slightly worse. This is a no-
table result for the adaptable (or “trained”) distance measures in particular, as
their parametrization was compiled manually and with much less training data.
Combining the approaches yields an even better performance, up to a maximum
of 93.72% when the mapper is used first, the rule-based approach second, and
either MultiWLD or FlexMetric last. However, any chain that starts with the
wordlist mapper results in a comparable score, making it hard to determine a single
“best” combination here. It should be noted that these scores are very close to
the maximum accuracy of 94.65%, showing that these approaches—and the chain
configurations in particular—are almost optimal for the Luther text.

Results for the Anselm text are considerably worse than for Luther; again, this
is to be expected, as the baseline is significantly lower (37.61%). Additionally,
much less training data was used for the mapper and the rule-based method. Their
scores fall below those of the trained distance measures, with MultiWLD now
achieving the best accuracy (67.91%) and FlexMetric following close behind. This
suggests that trained distance measures outperform both wordlist mappings and the
rule-based approach when only a small amount of training data is available.

Combining methods results in an even bigger increase in accuracy with the
Anselm text. The best result (73.63%) is achieved by using only the mapper
and MultiWLD, although the configuration that was best for the Luther text also

 10

Luther Anselm

Baseline 71,163 (65.13%) 1,512 (37.61%)

Mapper 101,170 (92.60%) 2,448 (60.90%)
Rule-based 98,767 (90.40%) 2,530 (62.94%)
MultiWLD 96,510 (88.33%) 2,730 (67.91%)
FlexMetric 92,353 (84.53%) 2,655 (66.04%)

Levenshtein 87,619 (80.19%) 2,161 (53.76%)

Mapper→ Rule-based→ MultiWLD 102,193 (93.53%) 2,947 (73.31%)
Mapper→ Rule-based→ FlexMetric 102,193 (93.53%) 2,947 (73.31%)

Mapper→ Rule-based→ Levenshtein 102,160 (93.50%) 2,793 (69.48%)
Mapper→ MultiWLD 102,131 (93.48%) 2,960 (73.63%)
Mapper→ FlexMetric 102,118 (93.47%) 2,911 (72.41%)

Mapper→ Levenshtein 101,867 (93.24%) 2,705 (67.29%)
Rule-based→ Mapper→ MultiWLD 98,890 (90.51%) 2,829 (70.37%)
Rule-based→ Mapper→ FlexMetric 98,890 (90.51%) 2,800 (69.25%)

Rule-based→ Mapper→ Levenshtein 98,857 (90.48%) 2,675 (66.54%)
Rule-based→ MultiWLD 98,890 (90.51%) 2,815 (70.02%)
Rule-based→ FlexMetric 98,890 (90.51%) 2,785 (69.28%)

Rule-based→ Levenshtein 98,857 (90.48%) 2,660 (66.17%)

Table 2: Accuracies after normalization, with methods evaluated both separately
and combined as a chain. “Baseline” gives the accuracy before normalization for
comparison. Best results are highlighted in bold.

shows a similar performance here. Again, a clear “winner” cannot be determined.
However, the tendency that the wordlist mapper should come first in the chain
holds equally for the Anselm text as for Luther, despite the comparatively bad
performance of the mapper on Anselm when used in isolation.

Untrained Levenshtein distance always performs worst, which is especially
apparent in the separate evaluation. This suggests that it should probably never be
used for the normalization task, or at least not in isolation, as a list of edit weights
compiled from even a small input sample gives significant boosts in accuracy.

6 Comparison to VARD 2

A well known interactive tool for normalization of historical texts is VARD 2
(Baron and Rayson [2]). It was designed for use with Early Modern English texts
and also combines different normalization methods. VARD is written in Java and
is freely available for academic research.6

In contrast to Norma, VARD features a graphical user interface for interactive
processing of texts. When a text is loaded into the tool, historical spelling variants
are automatically detected and highlighted. Right-clicking on a variant word form

6http://www.comp.lancs.ac.uk/~barona/vard2/

 11

shows a list of suggested normalization candidates; the user can choose to either
normalize all occurrences of a word form or one particular instance only. VARD
clearly offers much more convenience here. However, its approach is not function-
ally different, i.e., the same kind of user interface and functions could also be built
on top of Norma.

The biggest difference between the tools, however, lies in the customizability
of the normalization methods. VARD combines four different methods: ‘known
variants’, which is similar to the wordlist mapper described in Sec. 5.2; ‘letter
replacement’, which applies a list of letter replacement rules to a word; ‘phonetic
matching’, which uses a modified Soundex algorithm to find modern word forms
that are phonetically similar to the input word; and standard edit distance. Addi-
tionally, all candidate word forms are matched against a modern lexicon.

This set of normalization methods is fixed and can be neither reduced nor
extended. Also, while some of these components can be modified, the phonetic
matching algorithm is hard-coded to the phonetics of English and can neither be
changed nor completely turned off. Consequently, when working with texts in
other languages, this algorithm is most likely to produce incorrect results. Norma,
on the other hand, places no restrictions on the use and combination of normalizers,
which should enable an easier adaption to different languages.

Nevertheless, there has been work on adapting VARD to other languages, such
as Portuguese (Hendrickx and Marquilhas [8]). To be able to compare VARD’s
performance with Norma’s, a similar adaption has been tried for the German data.
To this end, VARD has been given the same modern lexicon and the same letter re-
placement rules as the MultiWLD algorithm in the former evaluation (cf. Sec. 5.2).
The training part of each text was then used to run VARD’s training mode. Finally,
batch mode with a threshold of 0%7 was used to normalize the evaluation parts.

Final accuracies were 91.19% (Luther) and 69.38% (Anselm), both worse than
the best scores in the evaluation with Norma (cf. Table 2). However, VARD
performed better on the Anselm text than any normalization method in isolation.
Interestingly, it performed worse on Luther than the wordlist mapper alone, despite
having learned the same mappings from the training text.

7 Related Work and Outlook

Previous work on historical spelling variation tends to focus on the task of in-
formation retrieval (IR), which is basically reverse to normalization: finding his-
torical variants that correspond to a modern input string (e.g., Baron et al. [3],
Ernst-Gerlach and Fuhr [6], Hauser and Schulz [7]). It is unclear how well these
approaches translate to the normalization task with a view to further processing of
the data by NLP tools such as POS taggers.

7The threshold is the minimum F-score required for a normalization candidate to be used; a setting
of 0% ensures that all variant word forms will be normalized, which is closest to the behaviour of
Norma. Also, the default setting of 50% was found to perform significantly worse.

 12

For future work, more distance measures could be included in the evaluation.
Zobel and Dart [14] test different methods in the context of spelling correction
and name matching, and find an n-gram string distance to be effective. Jurish
[9] uses token context information and a combination of different methods via
a hidden Markov model to normalize historical German, achieving high perfor-
mance, though also evaluated as an IR task. Context information has not yet been
considered for Norma, but is a possible line of future research.

Incremental learning is a core feature of Norma, but has so far been neglected in
the evaluation. Parameter sets for FlexMetric and MultiWLD have been compiled
manually with good results; it remains to be tested whether similar results can
be achieved when learning parameters automatically from training data, and if so,
how much training data is needed. Adesam et al. [1] describe a pilot study using
automatically extracted replacement rules with promising results.

Finally, normalization also bears similarities to machine translation, in which
words (to be normalized) correspond to sentences (to be translated) and charac-
ters correspond to words. This is especially apparent in the rule-based method
(cf. Sec. 2) where character identities must be learned in the same way as sub-
stitutions, and where context information is taken into account, similar to the
implementations of statistical translation models.

8 Conclusion

In this paper, several approaches to normalization were discussed and evaluated
against two different historical texts. When used in isolation, the rule-based method
and a simple wordlist mapper performed best on the Luther text, where a large
amount of training data was available. Trained distance measures performed best
on the Anselm text, where only a small amount of training data was used and
which showed considerably more variation in spelling. In all cases, a combination
of these methods proved to be best, achieving an accuracy of up to 93.72% for
Luther and 73.63% for Anselm. In particular, the results showed that integrating a
simple word-to-word mapper always increased accuracy.

Evaluation was performed using Norma, an interactive normalization tool which
is easily extensible and more flexible than the comparable VARD tool. Norma
was used here for its capability of employing, training, and combining different
normalization methods, though the possibility of semi-automatic normalization
using incremental learning techniques remains to be explored further.

References

[1] Yvonne Adesam, Malin Ahlberg, and Gerlof Bouma. bokstaffua, bokstaffwa,
bokstafwa, bokstaua, bokstawa. . . Towards lexical link-up for a corpus of Old
Swedish. In Proceedings of KONVENS 2012 (LThist 2012 workshop), pages
365–369, Vienna, Austria, 2012.

 13

[2] Alistair Baron and Paul Rayson. VARD 2: A tool for dealing with
spelling variation in historical corpora. In Proceedings of the Postgraduate
Conference in Corpus Linguistics, 2008.

[3] Alistair Baron, Paul Rayson, and Dawn Archer. Automatic standardization
of spelling for historical text mining. In Proceedings of Digital Humanities
2009, Maryland, USA, 2009.

[4] Marcel Bollmann, Florian Petran, and Stefanie Dipper. Applying rule-based
normalization to different types of historical texts — an evaluation. In
Proceedings of LTC 2011, pages 339–344, Poznan, Poland, 2011.

[5] Thorsten Brants. TnT — a statistical part-of-speech tagger. In Proceedings
of ANLP 2000, pages 224–231, Seattle, USA, 2000.

[6] Andrea Ernst-Gerlach and Norbert Fuhr. Generating search term variants for
text collections with historic spellings. In Proceedings of the 28th European
Conference on Information Retrieval Research (ECIR 2006). Springer, 2006.

[7] Andreas W. Hauser and Klaus U. Schulz. Unsupervised learning of edit
distance weights for retrieving historical spelling variations. In Proceedings
of FSTAS 2007, pages 1–6, Borovets, Bulgaria, 2007.

[8] Iris Hendrickx and Rita Marquilhas. From old texts to modern spellings: an
experiment in automatic normalisation. JLCL, 26(2):65–76, 2011.

[9] Bryan Jurish. More than words: using token context to improve canon-
icalization of historical German. Journal for Language Technology and
Computational Linguistics, 25(1):23–39, 2010.

[10] Sebastian Kempken. Bewertung historischer und regionaler Schreibvarianten
mit Hilfe von Abstandsmaßen. Diploma thesis, Universität Duisburg-Essen,
2005.

[11] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[12] Silke Scheible, Richard J. Whitt, Martin Durrell, and Paul Bennett.
Evaluating an ‘off-the-shelf’ POS-tagger on Early Modern German text. In
Proceedings of LaTeCH-2011, pages 19–23, Portland, USA, 2011.

[13] Anne Schiller. Deutsche Flexions- und Kompositionsmorphologie mit PC-
KIMMO. In Roland Hausser, editor, Proceedings of the first Morpholympics,
Tübingen, 1996. Niemeyer.

[14] Justin Zobel and Philip Dart. Finding approximate matches in large lexicons.
Software: Practice and Experience, 25(3):331–345, 1995.

 14

Poio API - An annotation framework to bridge
Language Documentation and Natural Language

Processing

Peter Bouda, Vera Ferreira, António Lopes

Centro Interdisciplinar de Documentação Linguística e Social
Rua Dr. António Ferreira da Silva Totta 29, 2395-182 Minde, Portugal

E-mail: pbouda@cidles.eu, vferreira@cidles.eu, alopes@cidles.eu

Abstract

After 20 years of multimedia data collection from endangered languages and
consequent creation of extensive corpora with large amounts of annotated
linguistic data, a new trend in Language Documentation is now observable.
It can be described as a shift from data collection and qualitative language
analysis to quantitative language comparison based on the data previously
collected. However, the heterogeneous annotation types and formats in the
corpora hinder the application of new developed computational methods in
their analysis. A standardized representation is needed. Poio API, a scien-
tific software library written in Python and based on Linguistic Annotation
Framework, fulfills this need and establishes the bridge between Language
Documentation and Natural Language Processing (NLP). Hence, it repre-
sents an innovative approach which will open up new options in interdisci-
plinary collaborative linguistic research. This paper offers a contextualiza-
tion of Poio API in the framework of current linguistic and NLP research as
well as a description of its development.

1 Introduction

Language Documentation is a new and promising domain in linguistics. Through
the data collected in several documentation projects during the last 20 years, a basis
was created for systematic quantitative language comparison. However, to achieve
this goal, a standardized representation of the existing data must first be created.
This is what we intend to do with Poio API, a scientific software library written in
Python.

After a brief introduction to Language Documentation (Part 2) and a short
presentation of Natural Language Processing (Part 3) and Quantitative Language
Comparison (Part 4), we will concentrate on the description of Poio API in the last
section of this paper (Part 5).

 15

2 Language Documentation

Language diversity, its documentation, and analysis have always interested lin-
guists around the world, especially those working on language typology. However,
the beginning of language documentation as it is known today is normally set dur-
ing the last decade of the 20th century. Several factors contributed to the emergence
of this "new" linguistic discipline. First of all, technological developments which
enabled the recording, processing, and storage of large amounts of linguistic data
with high quality portable devices and fewer storage necessities (i.e. by more ef-
ficient codecs) opened up new perspectives and possibilities for the work in the
field, in and with the language communities. On the other hand, the interest in lin-
guistic diversity and more specifically in endangered languages spread beyond the
academic world and became a public issue, mainly through the continuous reports
on the subject (some of them very populistic and without scientific foundation)
published by the press and well-known institutions, such as the UNESCO with its
Atlas of World’s Languages in Danger1. This mediatization also contributed to
the rise of financial support for the documentation and research of undocumented
or poorly documented languages2. Additionally, the need to standardize the study
and documentation of endangered languages became a current subject in academic
discussions.

In this context, documentary linguistics ([8]) imposed itself with the aim of
developing a "lasting, multipurpose record of a language" ([9]). The collection,
distribution, and preservation of primary data of a variety of communicative events
([8]), i.e. real situations of language use in several contexts, emphasizes the differ-
ence between documentary linguistics and descriptive linguistics. In this sense, pri-
mary data include not only notes (elicited or not) taken by linguists during the work
with the language community, but also, and above all, audio and video recordings,
as well as photos and text collections. The data is normally transcribed, trans-
lated, and it should also be annotated. This task requires linguistic annotations
(morpho-syntactic, semantic, pragmatic, and/or phonetic annotations,) as well as
a broad range of non-linguistic annotations (anthropological, sociolinguistic, mu-
sical, gestual, etc. annotations) whenever possible and/or if important to the lan-
guage community being documented. Even if no full annotation is made in the
way described before (mostly because it is not manageable in the limited times-
pan of language documentation projects and/or the financial resources available do
not permit to build real interdisciplinary teams), the fact of making primary data
availabe presents the advantage that researchers from the same or from other dis-

1http://www.unesco.org/culture/languages-atlas/, accessed 30.8.2012
2See for instance the DoBeS program financed by the Volkswagen Foundation -

http://www.mpi.nl/DOBES/dobesprogramme/, accessed 30.8.2012, The Hans Rausing Endan-
gered Languages Project from SOAS in London - http://www.hrelp.org/, accessed 30.08.2012,
or the program Documenting Endangered Languages from the National Science Foundation -
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12816, accessed 30.08.2012, to refer only a
few.

 16

ciplines can use the data for their own purpose and complement it with their own
annotations.

Typical end products of language documentation projects are:

• Multimedia corpora (with audio, video, photos, and annotations) properly
archived;

• Dictionaries (frequently multimedia dictionaries);

• Sketch grammars of the documented language where the main characteristics
of its grammatical system are described and which serve as a kind of user
manual for the created corpus. The data included in the grammar should be
entirely extracted from the collected data.

This new perspective on collecting, analyzing and distributing linguistic data
brought by documentary linguistics has proven to be a very important step towards
interdisciplinary research in Humanities and towards the improvement of account-
ability of linguistic research results.

However, several technical requirements must be fulfilled in order to ensure a
"lasting, multipurpose" documentation of a language. As for data processing, two
different softwares for transcriptions and annotations are widely accepted: ELAN,
developed by the technical team at Max-Planck-Institute (MPI) in Nijmegen, and
Toolbox, developed by SIL International. And, most important of all, the data
must be archived and made available to researchers, language communities, and
the general public.

Two of the best-known archives today that preserve and publish documenta-
tion on endangered languages are The Language Archive (particularly the DoBeS
session in archive)3 at MPI in Nijmegen and the Endangered Languages Archive
(ELAR)4 at SOAS in London.

3 Natural Language Processing

As mentioned in section 2, data from language documentation projects has always
been used in analysis tasks. Researchers have written dictionaries, typological
sketches or reference grammars about "their" language, based on the data they col-
lected in the field. The digitization of a whole research field for data processing
and archival purposes recently led to new types of quantitative studies emerging
within the research fields of language typology, language classification and histori-
cal linguistics (see for example [16], [18]). This shift from qualitative to quantative
analysis is now also observable in recent research with data from language docu-
mentation: digital archives provide corpora that are extensive enough to be used
with established and new mathematical methods to process natural language.

3http://www.mpi.nl/DOBES/archive_info/, accessed 30.8.2012
4http://elar.soas.ac.uk/, accessed 30.8.2012

 17

Natural Language Processing (NLP) is best understood in its widest sense, "any
kind of computer manipulation of natural language" ([4]). It has become an inte-
gral part of computer-human-interaction and, as such, of people’s everyday life all
over the world. The start of NLP was closely related to the field of Artificial Intelli-
gence (AI) and connected to research which aimed at understanding and simulating
the human mind. A new approach based on statistics and stochastics in the 1980s
was found superior to the classical AI systems ([17]). Although NLP has had the
advantage of a vast financial support, most of the research has been concerned
with systems that process major languages such as English, German, Spanish, etc.,
which are spoken by many potential end users in the economic centres of the 20th
century. As these languages represent only a small part of the global linguistic di-
versity and are furthermore restricted to a sub-part of one language family, namely
Germanic, Romanic, and occasionally Slavic languages from the Indo-European
language family, most systems are highly limited when it comes to processing
language in a broader sense. This becomes apparent when processing "new" big
languages like Chinese and Arabic, and this has led to many developments and
rapid progress in this research field.

4 Quantitative Language Comparison

Within the broad field of NLP the methods from corpus linguistics have been the
first to be applied to the data from language documentation. A central task in
most language documentation projects remains the annotation of the corpus. Thus,
(semi-)automatic taggers based on statistical or rule-based tagging mechanisms de-
veloped in corpus linguistics support fieldwork and later analysis. But corpus lin-
guistic methods have also been used to gain insights into how the languages work,
something which is not anymore possible through human processing alone as soon
as a researcher works on an extensive corpus of language data. Statistical models
support the work of the linguist by showing regularities or deviations within large
data sets. It soon became clear, though, that the existing methods are not suffi-
cient when it comes to language comparison in typological research within general
linguistics. Table 1 shows some of the crucial differences between the work with
corpora in corpus linguistics and language comparison in language typology and
historical linguistics. Note that we see this as tendencies, there are of course corpus
linguists who work with spoken texts, for example. To highlight the differences, we
would like to call the area of research which uses mathematical models on corpus
data for language comparison and classification "Quantitative Language Compar-
ison", as introduced by Michael Cysouw in his research group at the University
of Munich5. The publications [15], [18] and [2] exemplify the kind of innovative
approaches which are being developed in this emerging research field. Within this
research area scientists work with annotated data from dictionaries and texts from a
large group of different language families. They were mostly collected in language

5http://www.qlc.sprachwiss.uni-muenchen.de/index.html, accessed 27.8.2012

 18

documentation projects or are the result of linguistic work in the field. The type
of annotations range from extremely sparse annotations (only translations or chap-
ters/verses in bible texts) to rich morpho-syntactic annotations manually added to
audio and video transcriptions. The goal of the project Poio API is to make the data
available to the existing and newly developed computational methods for analysis
through a common and standardized representational mean, the annotation graph.

Corpus Linguistics Quantitative Language
Comparison

Nr. of languages 1 >10
Orthography standardized different orthographies

across sources
Mode (mainly) written spoken and written
Size of corpora big (> 100.000 tokens) small (around 10.000 to-

kens)
Annotations more or less standardized

(tagsets etc.)
different annotation
schemes even within
one project

Table 1: Tendencies Corpus Linguistics vs. Quantitative Language Comparison

5 Poio API

The framework we develop to accomplish the task of using a standardized represen-
tation is Poio API6, a scientific software library written in Python. It provides ac-
cess to language documentation data and a wide range of annotations types stored
in different file formats. Poio API is based on a common and standardized repre-
sentation format (LAF). The data and annotations can then be used with existing
NLP tools and workflows and hence be combined with any other data source that
is isomorphic to the representations in our framework.

5.1 Annotation Graphs, LAF and GrAF

Part of Poio API is an implementation of the ISO standard 24612 "Language re-
source management - Linguistic annotation framework (LAF)" ([14]). As repre-
sentational file format we will use GrAF/XML (Graph Annotation Framework) as
described in the standard. LAF uses the idea of annotation graphs ([3]) to repre-
sent linguistic data. Graphs can generally be seen as the underlying data model
for linguistic annotations. [11] gives an overview and examples of how data from
different sources may be mapped into a LAF representation through GrAF and
how graphs can directly be used in analysis tasks on this combined data. GrAF is

6https://github.com/cidles/poio-api, accessed 27.8.2012

 19

already the publication format for the Manually Annotated Sub-Corpus (MASC)
of the Open American National Corpus ([13]). The American National Corpus
also provides plugins for the General Architecture for Text Engineering (GATE7)
and the Unstructured Information Management Architecture (UIMA8).Hence, data
and annotation represented with GrAF may be used directly in well established sci-
entific workflow systems ([12]). Another advantage of using GrAF for language
documentation data is its radical stand-off approach, where data and annotation are
completely separated from each other and may be collected and improved collabo-
ratively in a distributed environment. Poio API will thus facilitate the integration of
results from different teams and provide a way to work independently on a data set
and with heterogenous annotation sources. Since the use of stand-off annotations
is not yet common in language typology nor language documentation, we see Poio
API as an innovative approach which will lead to new options in interdisciplinary
collaborative linguistic research9.

5.2 The CLARIN project

Poio API is developed as part of a project of the working group "Linguistic Field-
work, Ethnology, Language Typology" of CLARIN-D, the German section of the
large-scale pan-European "Common Language Resources and Technology Infras-
tructure" project (CLARIN10). The software library will be part of a web service
and application which allow researchers to access, search, and analyze data stored
in The Language Archive (at MPI in Nijmegen) together with local data or data
from other sources which conform to the already developed CLARIN standard
proposal "Weblicht" ([10]) or can be mapped onto LAF. Poio API itself is also the
basis for two desktop software packages (Poio Editor and Poio Analyzer) which
are already being used by researchers in language documentation projects to edit
and analyze data and annotations. The three main blocks of the implementation of
Poio API are:

• API Layer: provides unified access to language documentation data and
uses the concepts that researchers understand instantly (i.e. do not hand out
graphs, but interlinear text);

• Internal Representation: implements LAF, as described above;

• Parser/Writer Layer: handles the data from different file formats, input and
output.

Specifically, Poio API will provide unified access to two of the most common
data formats in language documentation: ELAN’s EAF format and the file format

7http://gate.ac.uk/, accessed 27.8.2012
8http://uima.apache.org, accessed 27.8.2012
9For problems regarding approaches without radical stand-off annotations see for example [1],

[5]
10www.clarin.eu, accessed 27.8.2012

 20

of the software Toolbox. It will then supply the data in a representation consistent
with the concepts of researchers in language documentations, for example repre-
sentation of data and annotation in interlinear text. Figure 1 shows the architec-
ture of the library and how it is embedded within the project. The big block with
the label "Library" represents Poio API. It contains "LAF" (Linguistic Annotation
Framework) as a generic representation in the center, for which we will use an
implementation of GrAF. This representation is mapped on several file formats on
the one side and on hierarchical data structures (see 5.3.1) on the other side. Both
mappings will be implemented with a plugin mechanism, so that developers can
easily attach new file formats or their own data structures.

Webservice

Plugins

Morpho-syntactic
structure

POS
structure

GRAID
structure

Generic representation (LAF)

Search

Library

Parser/
Writer

Parser/
Writer

Parser/
Writer

Parser/
Writer

Desktop-GUI Web-GUI

Figure 1: Architecture of Poio API

5.3 Technical implementation

Part of Poio API is based on the implementation of PyAnnotation11, a library which
allows researchers to access ELAN EAF and Toolbox files. This library has a
similar goal as Poio API, but it does not use a general internal representation for the
different annotation formats. This makes it difficult to add new types of annotation
or other file formats. Poio API is a complete rewrite of PyAnnotation to extend
the usage scenarios. We will first describe the two data types (data structure and
annotation tree) the library currently supports to handle data and annotations and

11https://www.github.com/cidles/pyannotation, accessed 29.8.2012

 21

then give an outlook on how we plan to connect the GrAF representation to those
types.

5.3.1 Data Structure Types

We use a data type called data structure type to represent the schema of annotation
in a tree. A simple data structure type describing that the researcher wants to tok-
enize a text into words before adding a word-for-word translation and a translation
for the whole utterance looks like this:

[’ u t t e r a n c e ’ , [’ word ’ , ’wfw ’] , ’ t r a n s l a t i o n ’]

A slightly more complex annotation schema is GRAID (Grammatical Relations
and Animacy in Discourse, [7]), developed by Geoffrey Haig and Stefan Schnell.
GRAID adds the notion of clause units as an intermediate layer between utterance
and word and three more annotation tiers on different levels:

[’ u t t e r a n c e ’ ,
[’ c l a u s e u n i t ’ ,
[’ word ’ , ’wfw ’ , ’ g r a i d 1 ’] ,

’ g r a i d 2 ’] ,
’ t r a n s l a t i o n ’ , ’ comment ’]

We see two advantages in representing annotation schemes through those sim-
ple trees. First, linguists instantly understand how such a tree works and can give a
representation of "their" annotation schema. In language documentation and gen-
eral linguistics researchers tend to create ad-hoc annotation schemes fitting their
background and then normally start to create only those annotations related to their
current research project. This is for example reflected in an annotation software
like ELAN, where the user can freely create tiers with any names and arrange them
in custom hierarchies. As we need to map those data into our internal represen-
tation, we try to ease the creation of custom annotation schemes that are easy to
understand for users. For this we will allow users to create their own data structure
types and derive the annotation schemes for GrAF files from those structures.

The second significant advantage is that we can directly transform the tree
structures into a user interface for annotation editors and analysis software. Poio
Editor and Analyzer make use of this and currently consist of no more than a few
hundred lines of code but support every annotation scheme our data structure types
can represent. This makes customization of the software for individual projects
easier, as we remove a lot of complexity from our code base and can quickly intro-
duce other software developers to our code.

We are aware that not all annotation schemes can be mapped onto a tree-like
structure as in our data structure type. Non-linear annotations like co-reference or
connections between tiers can not be represented with a simple hierarchical data
type. We plan to support those schemes directly through the annotation graphs as
represented in LAF and GrAF. We still have to find a simple strategy to map those
annotation schemes to a graphical user interface later.

 22

5.3.2 Annotation Trees

The data type annotation tree contains the actual content: data and annotations.
The content is currently stored in a tree structure which mirrors the hierarchy of
the data structure type. Figure 2 shows the relation between the data structure
type and the annotation tree. Note that every open square bracket "[" in the data
structure type has the implicit meaning "one or more elements of the following".

Figure 2: Relation between data structure type and annotation tree

The representation of the tiers containing tokenized data, such as the "clause
unit" and "word" tier in the GRAID scheme, is still open to discussion. Right
now they are given as full strings in the annotation tree, but we plan to return
them as string ranges of the "utterance" tier. This reflects that tokens of the base
data are stored by start and end indices in the annotation graphs. One problem is
that those tokens might be represented by different strings as it is the case in the
base data in some annotation schemes, for instance in a morpho-syntactic analysis.
The following example shows how researchers encode implicit knowledge about
morpho-phonemic processes in their annotations12:

(1) ref HOR068

tx
mo
gl

Hegų
hegų
that.way

wogitekji
woogitek-xjį
be.angry-INTS

hųųroǧoc
ho<į-Ø->roǧoc
<1E.U-3SG.A>look.at

12Example kindly provided by Prof. Dr. Helmbrecht from the University of Regensburg, selected
from his Hocank [win] corpus.

 23

wa’ųąkšąną,
wa’ų-’ąk-šąną
do/be(SBJ.3SG)-POS.HOR-DECL

hegų
hegų
that.way

’eeja
’eeja
there

nųųgiwąkjį
nųųgiwąk-jį
run-INTS

kirikere
kiri-kere
arrive.back.here-go.back.there

haa.
haa
make/CAUS\1E.A

ft He was looking at me real mad and I left there running fast.
dt 25/Sep/2006

Here the word hųųroǧoc is still found as a token in the utterance tier (\tx), but
the morphological analysis splits the word into the morphemes ho-į-ǫ-roǧoc which
are not the same string as on the utterance tier. Those cases are easily stored in an
annotation graph, as we can store the string representation of the morphemes in a
feature vector of the token node or even attach a new node to it. We are currently
working on an enriched version of the annotation tree which stores this additional
information together with string ranges.

5.3.3 graf-python

The library graf-python13 was developed by Stephen Matysik for the American Na-
tional Corpus. It provides the underlying data structure for all data and annotations
that Poio API can manage. The library graf-python is the Python implementation
of GrAF. More information about GrAF, the corresponding Java implementation
and how the framework implements annotation graphs can be found in the GrAF
wiki14.

GrAF comprises three important parts:

• A data model for annotations based on directed graphs;

• Serializations of the data model to an XML file;

• API methods for handling the data model.

The integration of GrAF in Poio API is still at an early stage, so we will not
discuss it in detail here. The important question at the moment is how we can map
the structure of an annotation graph into a data format which reflects the annotation
schemes encoded by the data structure types. This intermediate data format will
look similar to the annotation trees described above so that we can still feed the data
to user interfaces and present the data to the researcher in a format he is familiar
with.

Another open question is how we can transform the different file formats to a
GrAF data structure. As mentioned above, the different tiers can be arranged in

13https://github.com/cidles/graf-python, accessed 30.8.2012
14http://www.americannationalcorpus.org/graf-wiki, accessed 30.8.2012

 24

any way in a software like ELAN. We are currently working on different parsing
strategies for those files to get the correct tokens and their annotations for the graph.

6 Conclusion

After 20 years collecting primary data on endangered languages and building mul-
timedia and multi-purpose corpora, a new trend in Documentary Linguistics is
emerging. The main focus lies now less on the documentation and more on the
data, i.e. on the possible ways of combining and analyzing the collected data on a
project-independent level. As we have shown in this paper, Poio API represents an
important step in this direction.

References

[1] Bański, Piotr and Przepiórkowski (2009) Stand-off TEI annotation: the case
of the national corpus of polish. In Proceedings of the Third Linguistic Anno-
tation Workshop (LAW III), pp. 65–67.

[2] Bouda, Peter and Helmbrecht, Johannes (2012) From corpus to grammar:
how DOBES corpora can be exploited for descriptive linguistics In Lan-
guage Documentation & Conservations Special Publication No. 4: Elec-
tronic Grammaticography, Honolulu, Hawai’i: Department of Linguistics,
UHM.

[3] Bird, Steven and Liberman, Mark (2001) A formal framework for linguistic
annotation. In Speech Communication, Vol. 33, Issues 1–2, pp. 1–2, 23–60.

[4] Bird, Steven, Loper, Edward and Klein, Ewan (2009) Natural Language Pro-
cessing with Python. O’Reilly Media Inc.

[5] Cayless, Hugh A. and Soroka, Adam (2010) On implementing string-range()
for TEI. In Proceedings of Balisage: The Markup Conference 2010 (URL:
http://www.balisage.net/Proceedings/vol5/html/Cayless01/BalisageVol5-
Cayless01.html, accessed 27.8.2012)

[6] Dwyer, Arienne (2006) Ethics and practicalities of cooperative fieldwork and
analysis. In Gippert, Jost, Himmelmann, Nikolaus, Mosel, Ulrike (eds.) Es-
sentials of Language Documentation, pp. 31-66. Berlin, New York: Mouton
de Gruyter.

[7] Haig, Geoffrey and Schnell, Stefan Annotations using GRAID (2011)
(URL: http://www.linguistik.uni-kiel.de/graidmanual6.008sept.pdf, accessed
30.8.2012)

[8] Himmelmann, Nikolaus (1998) Documentary and descriptive Linguistics. In
Linguistics 36, pp. 161-195.

 25

[9] Himmelmann, Nikolaus (2006) Language documentation: What is it and
what is it good for?. In Gippert, Jost, Himmelmann, Nikolaus, Mosel, Ulrike
(eds.) Essentials of Language Documentation, pp. 1-30. Berlin, New York:
Mouton de Gruyter.

[10] Hinrichs, Marie, Zastrow, Thomas and Hinrichs, Erhard (2010) WebLicht:
Web-based LRT Services in a Distributed eScience Infrastructure. In Pro-
ceedings of the Seventh International Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta, May 19-21

[11] Ide, Nancy and Suderman, Keith (2007) GrAF: A graph-based format for lin-
guistic annotations. In Proceedings of the Linguistic Annotation Workshop,
pp. 1–8, Prague, Czech Republic, June. Association for Computational Lin-
guistics.

[12] Ide, Nancy and Suderman, Keith (2009) Bridging the gaps: interoperability
for GrAF, GATE, and UIMA. In Proceedings of the Third Linguistic Anno-
tation Workshop, pp. 27–34, Suntec, Singapore, August 6-7. Association for
Computational Linguistics.

[13] Ide, Nancy, Baker, Collin, Fellbaum, Christiane, Fillmore, Charles, and Pas-
sonneau, Rebecca (2010) MASC: A Community Resource For and By the
People. In Proceedings of ACL 2010, pp. 68–73, Uppsala, Sweden, July. As-
sociation for Computational Linguistics.

[14] ISO 24612:2012: Language resource management - Lin-
guistic annotation framework (LAF) International Organi-
zation for Standardization, Geneva, Switzerland. (URL:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326 (accessed
27.8.2012))

[15] Mayer, Thomas and Cysouw, Michael (2012) Language comparison through
sparse multilingual word alignment. In Proceedings of the EACL 2012 Joint
Workshop of LINGVIS & UNCLH, pp. 54–62, Avignon, France, April 23-24.

[16] McMahon, April and McMahon, Robert (2005) Language Classification by
Numbers. Oxford: Oxford University Press.

[17] Russell, Stuart J. and Norvig, Peter (2003) Artificial intelligence: A modern
approach. Upper Saddle River, N.J: Prentice Hall/Pearson Education.

[18] Steiner, Lydia, Stadler, Peter F., and Cysouw, Michael (2011) A Pipeline for
Computational Historical Linguistics. In Language Dynamics and Change,
pp. 89–127.

 26

Syllabification of Middle Dutch

Gosse Bouma
Rijksuniversiteit Groningen

g.bouma@rug.nl

Ben Hermans
Meertens Institute

ben.hermans@meertens.knaw.nl

Abstract

The study of spelling variation can be seen as a window allowing us to
understand the phonological systems of the dialects of Middle Dutch, and to
what extent they differed. Syllabic information is of great help in the study of
spelling variation, but manual annotation of large corpora is a labor-intensive
task. We present a method for automatic syllabification of words in Middle
Dutch texts. We adapt an existing method for hyphenating (Modern) Dutch
words by modifying the definition of nucleus and onset, and by adding a
number of rules for dealing with spelling variation. The method combines a
rule-based finite-state component and data-driven error-correction rules. The
hyphenation accuracy of the system is 98.4% and word accuracy is 97.4%.
We apply the method to a Middle Dutch corpus and show that the resulting
annotation allows us to study temporal and regional variation in phonology
as reflected in spelling.

1 Introduction

The Corpus Van Reenen Mulder1 (van Reenen and Mulder, 1993; Coussé, 2010)
consists of Dutch legal texts from the 14th Century. It is one of the very few
resources from that period that has been made available in electronic form. Due
to its size and composition (over 2.700 documents dated between 1300 and 1399
and from all Dutch speaking regions in the Netherlands and Flanders) it is ideally
suited for the study of spelling variation.

Our research is motivated by the need to study spelling variation of older Dutch
texts. To a large extent spelling variation is determined by phonological system-
aticity; that is, differences in spelling can be a consequence of differences between
dialects. Take for instance the difference between <priester>, <preyster> and
<prester> ‘priest’. It is possible that the differences in the spelling of the vowel
in the first syllable reflects a difference in the phonological status of this vowel
in the respective dialects; a centralizing diphtong in the case of <priester>, a
falling diphthong in the case of <preyster>, and a long mid vowel in the case
of <prester>. This is a legitimate analysis, because in the Dutch dialect area as

1www.diachronie.nl/corpora/crm14

 27

it is now, these differences are still attested. It is highly important to find cases
where orthographic variation is determined by phonological systematicity, because
they allow us to gain more insight into the phonological structure of the dialects of
Middle Dutch. It would be the first step in the construction of a dialect atlas of the
dialects of Middle Dutch.

To realize this goal the presence of information regarding syllable structure is
of great help. With the presence of syllabic information it becomes a lot easier
to determine the class of graphemes that are allowed in a specific position in a
syllable, like the coda. That, again, might help us to gain more insight into the
phonological processes that played a role in the domain of the coda. Consider, for
instance, the fact that the grapheme <gh> is found fairly often in the coda position.
Examples are <meghtich> ‘mightly’ and <ghetyghnesse> ‘testimony’. Normally,
the grapheme <gh> represents the voiced velar fricative. What does the presence
of this grapheme in coda position tell us? It suggests perhaps that, in some Middle
Dutch dialects, the process of devoicing did not apply in the same way it applies in
the modern dialects. The study of the distribution of the graphemes representing
voiced obstruents might reveal significant information regarding the processes of
devoicing, voice assimilation and the difference between dialects of Middle Dutch
with respect to these processes.

A second example of the importance of syllable structure is the distribution
of <l> in the coda. An important difference between dialects is to what extent
they allow the grapheme <l> in this position. In some dialects we find forms like
<arnolde> (proper name) and <goldene> ‘golden’, whereas in other dialects we
find the corresponding <arnoude> and <goudene>. The study of the distribution
of <l> in coda position might reveal how exactly the sound change whereby /l/
vocalized to a glide developed over time, how it spread regionally, and in which
phonological environments it took place.

In short, the study of spelling variation can be seen as a window allowing us to
understand the phonological systems of the dialects of Middle Dutch, and to what
extent they differed. By extenstion it allows us to study the development of phono-
logical processes over time, and the way they spread regionally. The information
of syllabic information is of great help in the study of spelling variation, and this
is the reason why we think it is important to construct a method for automatic
syllabification of words in Middle Dutch texts.

In this paper, we present a method to automatically add syllable boundaries
to Middle Dutch words. The method adapts an existing method for hyphenating
Modern Dutch words to Middle Dutch and consists of two parts: a finite-state
transducer which implements the two main rules for Dutch hyphenation, and a
statistical component that automatically learns rules to correct errors in the output
of the first method.

For testing and evaluation as well as for automatically learning error-correction
rules, we created a gold standard list of hyphenated word types. To this end, 50% of
the word types from the corpus was hyphenated automatically using the rule-based
finite-state system. The output of the automatic system was manually corrected

 28

to obtain a gold standard. Note that given the limited size of the corpus (approxi-
mately 650.000 tokens and 43.000 types),2 we could also have corrected all types
and used the corrected list to hyphenate running text. The advantage of our au-
tomatic method over a dictionary-based method, however, is that it will also be
able to hyphenate words that are not in the dictionary, and thus, its coverage on
unseen corpus-data will probably be better than a method based only on dictionary
look-up. In practice, highest accuracy is probably obtained by applying dictionary
look-up for known words, and the automatic method for unknown words.

In the context of two recent projects (Adelheid3, InPolder4) the texts in the
corpus van Reenen Mulder have been annotated with lemmas (in Modern Dutch
spelling) and morphological structure. Syllable boundaries, however, are not indi-
cated. As there is a considerable gap between the original spelling and the corre-
sponding lemma’s in Modern Dutch, it is not easy to determine syllable boundaries
or hyphenation points on the basis of a hyphenated Modern Dutch dictionary.

Below, we describe previous work on hyphenating (Modern) Dutch and rele-
vant differences between Modern and Middle Dutch. Next, we present our imple-
mentation of the finite-state hyphenation method, which achieves a hyphenation
accuracy of 94.0%. In section 5, we apply transformation-based learning and im-
prove accuracy to 98.4%. In section 6, we give some examples of using the corpus
for studying temporal and regional tendencies in spelling variation.

2 Hyphenating Modern Dutch

Bouma (2003) describes a method for accurate hyphenation of Modern Dutch
text. It consists of two steps: a finite-state transducer that implements the max-
imum onset principle, the most important rule for hyphenating Dutch words, and
a transformation-based learning component that, given a word list of correctly hy-
phenated words, automatically learns rules to correct errors produced by the finite-
state transducer. The system is trained and evaluated on hyphenated word forms
obtained from CELEX. The reported hyphenation accuracy (i.e. percentage of cor-
rectly inserted hyphens) is 99.3% and the word accuracy (i.e. percentage of cor-
rectly hyphenated words) is 98.2%.

Below, we give an informal overview of the system, emphasizing those aspects
that will need reconsideration for our current task.

The rules for syllabifying words in Dutch follow two general principles:

1. Syllable boundaries cannot cross morpheme boundaries.

2. The maximum onset prinpiciple is respected. That is, consonants that may
be added to either a preceding or following syllable are added to the onset of

2This is an approximation, as the transcription contains diacritic tokens to indicate unclear parts
of the original manuscripts, words written as one, etc. We ignored those in our counts.

3http://adelheid.ruhosting.nl
4http://depot.knaw.nl/8914/

 29

the following syllable if this does not violate constraints on onset clusters.

The finite-state method for hyphenating words only implements the second
constraint. The reason for ignoring the first constraint is that detecting morpheme
boundaries is hard, and requires, at least, a detailed lexicon and an implementation
of morphological rules. The second constraint can be implemented using finite-
state techniques. A detailed description is in Bouma (2003). That solution involves
the following steps:

1. Mark the beginning of a word (represented as a sequence of characters).

2. Mark the beginning and end of each nucleus in a word.

3. Insert a hyphen at each position between a nucleus and a following nucleus,
in such a way that the onset of the second nucleus is maximal.

4. Remove all markers except the hyphens.

Each of these steps can be implemented as a finite-state transducer, and the re-
sulting system is then the composition of these transducers. The implementation of
the rules is greatly simplified by the replace operator (Karttunen, 1995; Gerdemann
and van Noord, 1999), a finite-state method for implementing phonological rules
(i.e. contextually sensitive rules for replacing one symbol sequence by another).

In step 2, the method requires that each nucleus is marked. A nucleus is de-
fined here as the maximal sequence of characters (going from left to right) that
can represent a vowel or diphtong in Dutch. To this end, a listing of all possible
nucleus character sequences is provided. Similarly, in step 3, the method requires
that the onset of the second syllable follows the rules of Dutch orthography. Again,
this is implemented by providing a list of all possible onset character strings. No
constraints are imposed on the coda of a syllable, other than that it must consist of a
sequence of consonants. An example of this algorithm for the word <aardappel>
‘potato’, a compound of <aard> ‘earth’ and <appel> ‘apple’ is shown below:

aardappel
⇓

+aardappel
⇓

+@aa@rd@a@pp@e@l
⇓

+@aa@r-d@a@p-p@e@l
⇓

aar-dap-pel

Note that the sequence <aa> is marked as a single nucleus, in spite of the
fact that a letter <a> can also form a nucleus by itself. The output of the system
contains an error, as it identifies aar-dap as a syllable boundary, where this should

 30

have been aard-ap, following the morphological boundary between <aard> and
<appel>.

The hyphenation accuracy of a system that only uses the notions nucleus and
onset, is 94.5%, and word accuracy is 86.1%. To improve accuracy, one can
use data-driven machine learning techniques that learn from correctly segmented
words. In Bouma (2003), a method is presented that uses transformation-based
learning (Brill, 1995; Ngai and Florian, 2001). Given a word, the system considers
both the hyphenation predicted by the finite-state system and the correct hyphen-
ation produced by a human expert. By inspecting large data samples, the system
learns rules that correct frequent errors in the system output. In Bouma (2003),
290.000 hyphenated words from CELEX are used for training, and a hyphenation
accuracy of 99.3% and a word accuracy of 98.2% is achieved. This accuracy is
comparable to that of state-of-the-art hyphenation methods, such as the hyphen-
ation patterns implemented in the text typesetting package LATEX. An interesting
feature of transformation-based learning is that the error-correcting rules can them-
selves be interpreted as finite-state transducers, and thus can be composed with the
baseline finite-state hyphenator to obtain a highly efficient and accurate finite-state
hyphenator.

3 Challenges

Adapting the method described above to Middle Dutch requires that we modify the
definition of nucleus and onset and deal with some peculiarities of Middle Dutch
spelling.

Middle Dutch texts exhibit a substantial amount of spelling variation, as il-
lustrated in table 1. As a consequence, nuclei and onsets will also exhibit a wider
range of variation than in Modern Dutch. The nucleus <ey> in <borghermeyster>,
for instance, does not exist in Modern Dutch. More in general, the spelling of long
vowels sometimes involves doubling of the character (as in Modern Dutch), but in
other cases addition of <e>, <i> or <y> Thus, we find <aan>, <aen>, <ain>,
and <ayn>.5

While spelling variation in itself does not make the hyphenation task harder
(it just requires adding alternative spellings of nuclei and onsets), there are some
patterns that do require special attention:6

• The characters <i> and <j> are interchanged frequently (<iaer> vs <jaer>
‘year’, <ighelic> vs. <jghelic> ‘in fact’).

• Similarly, <u> and <v> are often used interchangeably: <uerclaringhen>

5Van Halteren et al., www.ccl.kuleuven.be/CLARIN/vanhalteren.pdf, and Kestemont et al.
(2010) address the issue of spelling normalization, where tokens in the original text are linked to the
most likely lemma in Modern Dutch.

6These are all a consequence of the fact that Middle Dutch orthography is influenced by Latin,
which did not distinguish between <i> and <j>, <v> and <u>, and did not have a <w>.

 31

borgchermestere
borgermestere
borghemeestere
borghemeyster
borghermeester
borghermeistere
borghermester
borghermeyster
borhermestere
burchmeester

burgeremeystere
burgermeesteren
burgermeister
burgermeystere
burghemeesteren
burghemeisteren
burghemeysteren
burghemeysters
burghermeestere
burghermeistere

burghermeisters
burghermestere
burghermeysters
burghmeester
burghmeisters
burghmesters
burghmeysteren
burghmeysters
burgmesters

Table 1: Spelling variants of the Dutch word for ‘mayor’. Inflected forms are only
included if the uninflected form with the same spelling was absent.

vs. <verclaringhen> ‘statement’, <uerstaen> vs. <verstaen> ‘understand’,
<zeuentien> vs. <zeventien> ‘seventeen’.

• The letter <w> is often used for the diphtong <uu> (<uutghesproken>
vs. <wtghesproken> ‘stated’, <zuutzide> vs. <zwtzide> ‘southside’).

• Finally, double <v> is sometimes used to denote a vowel (long <u>) (as in
<hvvs> (‘house’)) or a consonant (<w>) as in <gesvvoren> (‘sworn’).

This makes syllabification hard, as <i>, which only is (part of) a nucleus in mod-
ern spelling, may also be (part of) an onset in Middle Dutch. Similarly, <j> is
only used in onsets in Modern Dutch (except for the diphtong <ij>), but can also
be (part of) a nucleus in Middle Dutch. The same ambiguity holds for the character
pairs <u> and <v>, the character <w> and the character bigram <vv>.

4 Adapting a Rule-based Hyphenator

As the general principles of syllabification have not changed, the general archi-
tecture of the rule-based, finite-state, hyphenator for Modern Dutch outlined in
section 2 can remain unchanged. To account for the difference in orthography,
however, we must adapt the definition of nucleus and onset. Furthermore, charac-
ters i,j,u,v, and w require special attention.

4.1 Spelling issues

To make the task of identifying nuclei and onsets more accurate, we first replace
the character u with U in those cases where u functions as consonant, and replace
v,w, and j with V,W and J respectively, in contexts where these function as vowels:

 32

nucleus a, aaC, ae, ai, au, e, ee, ei, eu, ey, i, ie, ii, iae, J,
o, oe, ooC, ou, oi, oy, u, uuC, ue, uy, ui, V, Vy, W, y, ye

onset b, bl, br, c, ch, cl, cr, d, dr, dw, f, fl, fr, g, gh, gl,
gr, h, j, k, kl, kn, kr, l, m, n, p, ph, pl, pr, Q, r, s,
sc, sch, schr, scr, sl, sn, sp, spl, spr, st, str, t, th,
tj, tr, U, v, vl, vr, w, wr, x, z, zw

Table 2: A listing of the definition of nucleus and onset. Upper case C de-
notes any consonant. Upper case Q denotes the letter combination qu. Upper
case J,U,V,W indicate occurrences of lower case j,u,v,w that function as vowel
(<j>,<v>,<w> or consonant<u>).

• In the sequences aue, eue, and oui, u almost always functions as a v.
Therefore, we replace such sequences with aUe, eUe, and oUi, respectively,
where we use U as the character that denotes a u functioning as a consonant.

• In the sequences C1vC2 and +vC2, v almost always functions as u. (We
impose some restrictions on C2 to prevent over-generalization.) We replace
the v in such sequences with V to denote a v functioning as a vowel character.

• In the sequences C1wC2 and +wC2, w almost always functions as uu. We
replace the w in such sequences with W to denote a w functioning as a vowel
character.

• In the sequences + jn and + jm, j functions as i. Therefore, we replace j
with J to denote a j functioning as vowel.

After these rules have been applied, the steps that identify nuclei and syllable
boundaries are applied as in the finite-state method presented above.

4.2 Updating definitions

A nucleus is represented orthographically as a sequence of one, two, or sometimes
three vowel characters. Middle Dutch spelling allows for some sequences that are
not used in Modern Dutch (i.e. <ae>, <ai>, <ey>, <ii>, <iae>, <oy>, <uy>,
<ye>). We inspected the word list to find the most frequent cases and incorporated
these in the definition of nucleus, as shown in table 2. The spelling of onsets is to
a large extent identical to that in Modern Dutch.

The nuclei aaC, ooC and uuC in the list are not quite in accordance with lin-
guistic notions, but were introduced to make the prediction of hyphenation points
more accurate. In Modern Dutch, long vowels in closed syllables are represented
by a double character <aa>, <oo> or <uu>.7 Therefore, if we encounter such

7The long vowel <ee> is an exception, as this can also occur in word-final open syllables, i.e.
<zee> ‘sea’.

 33

a sequence, we know the syllable of which it is the nucleus has to contain a non-
empty coda. By marking the following consonant as part of the nucleus in such
cases, we prevent the maximum onset principle from considering the consonant as
part of the onset of a following syllable. The problem can be illustrated with a
word like <clooster>, ‘monastry’. By recognizing a nucleus oos, we predict the
hyphenation cloos-ter. Had we predicted the nucleus oo, we would obtain the
hyphenation cloo-ster, as <st> is a possible onset. It should be noted, though,
that the rule that says that <aa>, <oo>, and <uu> are always followed by a non-
empty coda is not absolute (in contrast with Modern Dutch). So, we do also find
examples such as <coo-pen> and <boo-de> and thus this strategy is less accurate
in Middle Dutch than in Modern Dutch.

4.3 Implementation

We implemented the hyphenation system as a sequence of finite-state transducers.
The steps in the algorithm are the same as for Modern Dutch, except that we intro-
duce one additional step where certain letters are replaced by upper case letters in
order to make the following steps more accurate.

1. Mark the beginning of a word (represented as a sequence of characters).

2. Replace letters j,u,v,w and bigram qu with an upper case letter in certain
contexts.

3. Mark the beginning and end of each nucleus in a word.

4. Insert a hyphen at each position between a nucleus and a following nucleus,
in such a way that the onset of the second nucleus is maximal.

5. Remove all markers except hyphens, and convert upper case letters to their
lower case counterparts.

The most crucial parts are steps 3 and 4, which require a definition of nucleus
and onset. We used the definitions in figure 2. We arrived at these definitions by
iterative testing on the list of types from the corpus.

The manually developed rule-based system is useful mostly as a base-line sys-
tem that helped us in creating a manually corrected list of word types with hyphen-
ation points. That is, we compiled a word list from our corpus and automatically
hyphenated the word types using our finite-state hyphenator. 50% of the resulting
data was corrected by a human expert. As the accuracy of the rule-based system is
relatively high, the amount of manual labor was modest and far more efficient than
an approach where hyphenation patterns have to be added manually to all words.

After creation of the gold standard word list, we observed that the automatic
system in fact achieved 94.0% hyphenation accuracy and 90.1% word accuracy.

 34

word (answered) a n d w e r d e
system an-dwer-de 0 0 1 0 0 0 1 0
correct and-wer-de 0 0 2 0 0 0 1 0

word (pilgrimage) b e d e v a e r d
system be-deu-aerd 0 0 1 0 0 1 0 0 0
correct be-de-uaerd 0 0 1 0 0 9 0 0 0

Table 3: Aligning system output and correct hyphenation patterns

5 Applying Transformation-based learning

By comparing the output of the automatic finite state hyphenation program with the
correct hyphenation in our segmented word list, we can detect where the program
makes errors. If we can find patterns or regularities in the errors, we can try to add
rules to the hyphenator that would correct or prevent these errors.

Transformation-based learning Brill (1995); Ngai and Florian (2001) is a ma-
chine learning method that automatically tries to find the rule that corrects most
errors in the data. The score of a rule (on a set of training data) is the number
of correctly corrected errors minus the number of newly introduced errors (as the
rule will usually also apply to a number of cases that were actually correct). The
method has been used mostly in part-of-speech tagging, and requires annotated
data for training. Given a corpus that is both manually annotated (providing the
gold standard) and annotated by a baseline POS tagger (for instance, a system that
always assigns the most frequent POS for a word), TBL learns rules that replace an
incorrect POS-tag in the system output by a correct POS-tag. After applying the
rule with the highest score to the output of the baseline system, rule scores are re-
computed and the rule with the highest score on the modified data is applied, and
so on until a stopping criterion is reached.

Correcting hyphenation errors can be seen as a similar task. We first assign
to each letter in an input word either the value 0 or 1, where 0 stands for ‘not
preceded by a hyphen’ and 1 stands for ‘preceded by a hyphen’. Furthermore, the
gold-standard hyphenation pattern is aligned with the system output by using two
more codes, 2 in case the hyphen actually has to be placed one more position to the
right, and 9 in case a hyphen has to be placed one position to the left. As explained
in Bouma (2003) this coding has the advantage that the correction of a hyphenation
mistake in general requires 1 instead of 2 correction rules. Two examples of this
alignment scheme are given in table 3.

We performed 10-fold cross-validation, where in each experiment the system
is trained on 90% of the data, and test on the remaining 10%. The highest scoring
rules for one of the experiments are given in table 4.

After applying the rules to a held out portion of the data, we obtain an average
hyphenation accuracy of 97.90% (s.d. = 0.173) and an average word accuracy of

 35

-ster → s-ter
-ru → r-u
-fl → f-l
-y → y

eu-a → e-ua
+io- → +io
c+hei → ch-ei
l-ue → lu-e

Table 4: The highest scoring error correcting rules learned by TBL

96.5% (s.d. = 0.317).
Roche and Schabes (1997) have shown that the rules learned by TBL can be

interpreted as finite-state transducers that replace a symbol by another symbol in
a given context. Sequential rule application corresponds to the composition of the
transducers for the individual rules. An end-to-end system, finally, that hyphen-
ates words, can be obtained by the composition of the finite-state transducer that
represents the rule-based system and the finite-state transducer that implements all
TBL rules. Using the FSA tools, we have computed this finite-state transducer (131
states, executable is 442 kB.)

6 Preliminary Exploration of results

The segmentation program that is the result of combining the rule-based and error-
driven components can be applied to all of the texts in the Corpus van Reenen
Mulder (CRM14). The result is texts in which each word has been segmented into
syllables with an accuracy of over 97%.8

The metadata in CRM14 provides both the year and location of the manuscripts.
Thus, we can easily compute the relative frequency of syllables, onsets, or nuclei
over a period of 100 years (1300-1400). For instance, onsets <gh> and <g> are
often used interchangeably, as witnessed by the fact that we find over 3000 minimal
pairs, i.e. word types that differ only in the choice for <gh> vs. <g> such as <al-
ghe-heel> vs. <al-ge-heel>. Similarly, the nuclei <ei> and <ey> are often used
interchangably (over 700 minimal pairs).

Figure 1 compares the change in relative frequency of the onsets <gh> and
<g> over time. It shows that during the period represented in the corpus, the
frequency of onset <gh> is falling while the frequency of onset <g> rises. Note
that for this comparison, obtaining accurate frequency estimates from a corpus with
unsegmented words is challenging, as determining whether g is part of a coda or
onset in word-internal positions is hard without actually segmenting the word.

We can also study regional tendencies in spelling. The geographical distribu-
tion of <ei> as a percentage of all <ei> + <ey> occurrences for a given location,9

8The word accuracy on running text is probably higher than that for a word list for the same
text. One reason is the fact that monosyllabic words tend to be frequent. As the programme hardly
makes mistakes on monosyllabic words (as identification of a nucleus is close to perfect), the overall
accuracy on running text will go up.

9Only shown for locations for which at least 10 occurrences of both forms were available.

 36

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

1300 1320 1340 1360 1380 1400

30
40

50
60

70

year

oc
cu

rr
en

ce
s

pe
r

10
00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

1300 1320 1340 1360 1380 1400

5
10

15
20

25
30

year
oc

cu
rr

en
ce

s
pe

r
10

00

Figure 1: Distribution of the onsets gh (left) and g (right) over time (1300-1400).

Figure 2: <ei> occur-
rences as a percentage of
the total number of <ei>
and <ey> occurrences for
various locations. Darker
colors indicate a higher
percentage of <ei>.

is given in Figure 2. It shows that preference for <ei> was stronger in the south of
the Netherlands than in the north.10

7 Conclusion

The study of phonological processes in historical text can benefit from accurate
information about the morphological and phonological structure of words. We
have presented a method for accurate syllabification of Middle Dutch texts, using
a finite-state and data-driven method originally developed for Modern Dutch. The
result can be compiled into an efficient transducer that can be used to automatically

10The map was created using the Gapmap software, www.gabmap.nl.

 37

annotate large corpora from the given era with syllable boundaries. An obvious
candidate is the Corpus Gysseling.11

By applying this method to the complete CRM14, we obtain a corpus annotated
with syllable boundaries. We demonstrate that this information can be used to
study both temporal and regional variation in the distribution of onsets and nuclei.
In future work, we hope to show that this can be the basis of deeper and more
principled studies into the phonology of Middle Dutch.

References

Gosse Bouma. Finite state methods for hyphenation. Journal of Natural Language
Engineering, 9:5–20, 2003. Special Issue on Finite State Methods in NLP.

Eric Brill. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics, 21:
543–566, 1995.

Evie Coussé. Een digitaal compilatiecorpus historisch Nederlands. Lexikos, 20:
123–142, 2010.

Dale Gerdemann and Gertjan van Noord. Transducers from rewrite rules with
backreferences. In Proceedings of the Ninth Conference of the European Chap-
ter of the Association for Computational Linguistics, pages 126–133, Bergen,
1999.

Lauri Karttunen. The replace operator. In 33th Annual Meeting of the Association
for Computational Linguistics, pages 16–23, Boston, Massachusetts, 1995.

M. Kestemont, W. Daelemans, and G. De Pauw. Weigh your words-memory-based
lemmatization for Middle Dutch. Literary and Linguistic Computing, 25(3):
287–301, 2010.

Grace Ngai and Radu Florian. Transformation-based learning in the fast lane. In
Proceedings of the second conference of the North American chapter of the ACL,
pages 40–47, Pittsburgh, 2001.

Emmanuel Roche and Yves Schabes. Deterministic part-of-speech tagging with
finite-state transducers. In Emmanuel Roche and Yves Schabes, editors, Finite
state language processing, pages 205–239. MIT Press, Cambridge, Mass., 1997.

P. T. van Reenen and M. Mulder. Een gegevensbank van 14de-eeuwse Middelned-
erlandse dialecten op de computer. Lexikos, 3:259–281, 1993.

11http://gysseling.corpus.taalbanknederlands.inl.nl/cqlwebapp/search.html

 38

Casting a Spell: Identification and Ranking of
Actors in Folktales

Folgert Karsdorp, Peter van Kranenburg, Theo Meder,
Antal van den Bosch

Email: {folgert.karsdorp,peter.van.kranenburg,
theo.meder}@meertens.knaw.nl

a.vandenbosch@let.ru.nl

Abstract

We present a system to extract ranked lists of actors from fairytales ordered
by importance. This task requires more than a straightforward application
of generic methods such as Named Entity Recognition. We show that by
focusing on two specific linguistic constructions that reflect the intentionality
of a subject, direct and indirect speech, we obtain a high-precision method
to extract the cast of a story. The system we propose contains a new method
based on the dispersion of terms to rank the different cast members on a scale
of importance to the story.

1 Introducing the Problem
Today do I bake, tomorrow I brew,
The day after that the queen’s child comes in;
And oh! I am glad that nobody knew
That the name I am called is Rumpelstiltskin!

So says the song of the little man in Brother Grimm’s Rumpelstiltskin with which
he accidentally reveals his name to the queen. Advances in the task of Named
Entity Recognition (NER) make it possible for computer systems to recognize his
name as well. NER seeks to locate and extract atomic textual units into a predefined
set of categories (e.g. PERSON, LOCATION and ORGANIZATION).

Now that we can recognize Rumpelstiltskin as being the name of a person, how
do we know that he is a character or actor in the story? Are all named entities within
the category of PERSON in a story automatically actors? How about characters that
have no proper name in a story, but are referred to by nominals or noun phrases?
How do we know that they are part of the cast of a story?

Most NER systems are developed for the domain of non-fiction, including
newspapers, manuals and so forth. Applications of NER in literary texts or folk-
tales, however, have been discussed only marginally (see [13] for an exception).

 39

Unfortunately, the knowledge gained from traditional NER systems is not easily
transferred to the domain of fictional texts, because of several incongruences be-
tween both domains. Named entities in fairytales, for example, are represented in
ways quite different from those in non-fiction. We find traditional proper nouns
such as Hansel and Gretel but also noun phrases such as the king and the big bad
wolf which, although expressed differently, have the same function as their proper
noun counterparts. To make things even more complicated, inanimate entities in
folktales may belong to the cast as well. A nice example of this can be found in the
story of The Fleeing Pancake, in which a pancake acts as the protagonist who tries
to escape from its predators.1

In this paper we present a method for extracting the cast from fictional texts.
The cast consists of a number of actors which we, following Bal [1], define as
“agents that perform actions” and have intentions. An action is seen as to cause
or experience an event. Actors are thus not necessarily human. As claimed by
structuralists such as Greimas, actors are distinguished from other entities by hav-
ing an intention. They strive towards a goal or aspire a particular aim [1]. The
identification of actors in a story therefore would require a method for detecting
intentionality. We show that direct and indirect speech are effective indicators of
intentionality. Extracting these constructions from a text gives us a high precision
method for retrieving the actors that form the cast of a story.

Not all actors in a story are equally important. The scale of importance ranges
from what is customary referred to as ‘the hero’ of a story to mere background
actors whose actions have relatively little influence on the course of the story. The
system we propose ranks the different cast members on a scale of importance to
the story on the basis of their dispersion in the text. We show that the ranking of
the system corresponds to a large extent with that of expert knowledge.

The outline of the paper is as follows. We begin with some background in-
formation about actors from the perspective of narratology and combine this with
insights from linguistics in Section 2. We then describe the corpus used and the
way the annotations of the corpus have been established. Section 4 presents the
computational methods used in this study. In Section 5 we report on the empiri-
cal results for the proposed method. The last section offers our conclusions and
directions for further research.

2 Backgrounds

2.1 Narratological Background

We ground our definition of an actor in the theory of narratology as developed by
Bal [1] who borrows from the French structuralist Greimas [6]. The underlying
presupposition in the proposal by Greimas is that human activity (thinking and
action) targets some aim. Actors are no different and show some intentionality of

1See for example http://www.pitt.edu/~dash/type2025.html#gander

 40

achieving this aim or goal. This could be the achievement of something pleasant,
some object of desire (be it physical or non-physical) or something disagreeable.
Natural language reveals this intentionality in particular verbs (e.g. to fear, to wish).

Bal distinguishes six classes of actors. There are actors who pursue some aim
(called SUBJECT) and the aim itself (called OBJECT). A SUBJECT x strives towards
some aim y where y is an OBJECT. In a prototypical fairytale love story these roles
might be filled with ‘the prince who wants to marry the princess’. OBJECTS are not
necessarily human or even animate but could also be a mental state or an aspiration
such as ‘becoming king’. Other types of actors in Bal’s theory are POWER and
RECEIVER. POWER is often an abstraction that supports the SUBJECT in reaching
its goal or prevents it from getting there. The RECEIVER is the one to whom some
desired object is ‘given’. These two actor types are closely related to another pair of
actors, namely the HELPER and the OPPONENT. As their name reveals, HELPERS

help the SUBJECT in achieving its goal (although providing only incidental help)
when some OPPONENT intends to distract it from doing so.

Actors are thus not necessarily human or animate beings, but can be of a more
abstract nature as well, such as skills and abilities. In this paper we are only inter-
ested in the classes of actors that show intentions in the context of a particular story.
Whether they are animate or not is only partly based on reality and is determined
mainly in relation to the story itself.

2.2 Linguistic Background

A baseline approach to the problem would be to tag all animate nouns as actors.
However, this compromises both on precision and recall, because not all animate
entities are actors in a story and not all inanimate entities are not actors.2 Fol-
lowing [1], we claim it is better to look for entities that exhibit intentionality or
consciousness. Are there any linguistic clues for intentionality?

Sentences in which the intentionality of some entity is most clearly revealed
are sentences containing direct speech. In traditional grammar the quoted clauses
in the examples below are commonly characterized as (direct) objects of the verbs:

(1) “Lay your head on the chopping block,” said the old witch.

(2) “I heard the world cracking and I flee away,” answered the goat.

In sentences like these we read the text as if it was uttered by the actor. That we
should do so is both linguistically (by means of syntax) and orthographically (by
means of quotes) marked. However, speech can also be indirectly narrated, just as
thoughts, as the following examples show:

(3) The man asked why the old woman smashed all her eggs to pieces.

2Moreover, the identification of animate nouns would require a semantic lexicon, which is a rather
expensive resource not available for all languages.

 41

(4) The robbers thought the farmer had nothing to hide.

In these examples of indirect speech it is less clear that the presented text has to
be attributed to the actor; it may by influenced by the narrator’s stance towards the
situation. Traditionally, these sentences are characterized as complement construc-
tions in which the subordinate clauses fill the role of (direct) objects of the verbs
of the main clause. Most verbs that take such ‘direct object clauses’ belong to one
of the following semantic types [7]:

i Verbs that express a command, question, promise, etc (i.e. verbs of communi-
cation such as to tell, to promise, to beg);

ii Verbs that denote knowing, believing, supposing, etc (to imagine, to under-
stand, to realize);

iii Verbs that indicate the evaluation of something (to appreciate, to regret);

iv Verbs that express a wish or desire (to wish, to hope);

v Verbs that denote a particular way of perception (to hear, to discover, to see).

Verhagen points at an interesting commonality between these five verb types:

“[. . .] such predicates all evoke a mental state or process of a sub-
ject of consciousness (sometimes a process comprising a mental state,
as in the case of communication), and the content of the complement
is associated with this subject’s consciousness in a particular manner.”
[15, 100]

The resemblance with the idea of Greimas that actors are intentional entities aspir-
ing a particular goal or aim, should be clear. If we can automatically retrieve the
subject of the main clause of a complement construction, we have a good chance
of finding an actor in a story. Both instances of direct speech and indirect speech
provide us with cues about the intentionality of entities without the need to know
the verb’s semantics.

2.3 Computational Background

Few studies have focused on the recognition of actors in fictional texts. Declerck et
al. [2] present an ontology-based method for detecting and recognizing characters
in folktales. They concentrate on the interaction between a hand-crafted ontology
of folktale characters and the linguistic analysis of indefinite and definite nomi-
nal phrases. Although promising, given the rather small scale of the experiment
reported in this study, care must be taken when interpreting and generalizing the
results. Using both syntactic features and a semantic lexicon, Goh et al. [5] pro-
pose an automated approach to the identification of the main protagonist in fictional
texts, in particular fairytales. The method is not extended to the rest of actors.

 42

Several studies have tried to tackle the problem of quote attribution. Quote
attribution is the task of automatically extracting quoted speech and assigning them
to their speakers. This task is interesting to us since we assume that the speakers of
quoted speech and the conceptualizers of indirect speech form the cast of a story.

The studies about quote or speaker attribution can be divided into two types of
approaches: rule-based approaches and machine-learning approaches. Rule-based
approaches are represented by e.g. [4, 11, 3], who on the basis of syntactic rules
and finite-state automata attempt to select the correct speaker of a piece of quoted
speech. Other studies make use of machine-learning methods, e.g. [10, 3]. To find
the correct speaker of a quote, Elson and McKeown [3] assign the quotes into one
of seven syntactic categories. Many of these categories unambiguously lead to the
identification of the speaker. For the remaining categories, a binary classifier is
used that predicts for each pair of candidate speaker and quote whether it is the
speaker or not on the basis of a feature vector. In contrast with most other work,
Ruppenhofer et al. [11] incorporate not only direct speech, but also indirect speech
and is thus more related to our work.

Most of the approaches mentioned above make use of external semantic lexi-
cons to distinguish nominal phrases that are potential characters from other nom-
inal phrases. The primary selection criterion is whether the nominal phrase falls
within the category of living things. However, as stated above, whether some entity
is animate or not is determined in relation to the story itself. The same lexicons
are used to select sentences containing verbs of communication. In our approach
we can do away with such external sources by formulating specific linguistic con-
structions. In doing so, our method is not restricted to, for example, verbs of com-
munication, and can identify the more general category of verbs that describe some
other mental state such as a thought, a belief or a desire. Another difference is that
our approach is not limited to speaker identification of directly quoted speech, but
incorporates the conceptualizer of indirect speech as well. Finally, our system is
not restricted to the identification of an externally defined set of animate actors, but
can in principle identify any subject of consciousness.

The method presented in this study not only tries to identify actors, but also
attempts to rank them on a scale of importance. To our knowledge there are no
computational studies that model the importance of actors in fictional texts.

3 Corpus, its annotation and tools

Corpus The corpus consists of a collection of 78 Dutch folktales from [12]. The
collection is part of the Dutch Folktale Database from the Meertens Institute.3 The
collection was selected because it represents a homogeneous set of texts: (1) all
texts are fairytales, (2) they are written in standard Dutch and (3) they are edited
by the same author. The average number of words per story is 824 and a story
consists of 44 sentences on average.

3http://www.verhalenbank.nl

 43

Annotation To obtain gold-standard annotations of which actors are present in
the texts, we asked two experts4 in folktale research from the Meertens Institute
to give a list of the actors of the stories. In addition to this list they were asked to
rank the actors on a scale of importance to the story. Actors that were thought to be
of equal importance should be placed in the same position in the ranked list. If a
particular actor in a story is referred to with multiple names, we asked the experts
to list all alternative names together in single entries in the ranking. We did not
attempt to use or develop automatic procedures to resolve these coreferences.

Preprocessing and tools All texts were processed using the Dutch morpho-syntactic
analyzer and dependency parser Frog developed at the ILK Research Group [14].5

Frog contains a tokenizer that offers a high-precision quote detection system which
was crucial for extracting all quoted sentences from the stories.

4 Methodology

The system consists of two procedures: one for direct and one for indirect speech.
We developed a simple pattern matching algorithm for extracting the subject of sen-
tences with direct speech. First we extract all sentences containing quoted speech
(leaving out sentences that consist solely of quoted speech). Using the output of
the chunking module of Frog, the system then searches for the nearest head of a
noun phrase that is part of one of the following patterns:

(5) QUOTE VP NP (“You, our king”, cried the birds angrily.)

(6) VP NP QUOTE (“Oh dear”, said the queen, “only look at my combs!”)6

(7) NP VP QUOTE (The fox asked, “How many tricks do you know?”)

For indirect speech we extract the subject of matrix clauses of complementa-
tion constructions. We first locate all instances of subordinate conjunctions and
interrogatives that have a verb complement dependency relation. We then extract
the subject of the complement of the verb. We only included subjects that constitute
a definite or indefinite noun phrase. Some examples are:

(8) The queen wondered whether she would ever see her husband again.

(9) That the dragon was closing in, was obvious to the soldier.

By applying both procedures to all texts we extract a set of actors for each text.
The set of actors should be ranked according to the actors’ importance to the

story. Regular term weight measures such as TF×IDF are not appropriate for this

4Theo Meder and Marianne van Zuijlen
5http://ilk.uvt.nl/frog/
6Note that this example also matches with the first rule. Unlike in English, Dutch uses inversion

in subordinate clauses in which case the rule makes more sense.

 44

●

● ● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

farmer

fox

hare

pancake

pig

0 100 200 300 400
position in text

Figure 1: Lexical dispersion plot of actors in a version of The Fleeing Pancake.

ranking, because they estimate the importance of a term relative to the other texts
in the corpus, whereas we would like to have some intra-textual measure of impor-
tance. At first sight, frequency of occurrence does not seem to be a good measure
of importance either, because some actors might be referred to with high frequency
in only a short text span and may not be of overall importance to the story.

We therefore propose a ranking method that is based on the dispersion of actors
over a story. The basic idea is that more important actors are expected to appear
at more places in the story and are more evenly distributed over the story than less
important actors. Figure 1 plots the occurrences of the five actors in a version of
The Fleeing Pancake. The pancake is present throughout the entire text whereas
the fox, for example, is only briefly visible. Hence, we expect that the fox plays a
less prominent role than the pancake.

We chose to use Juilland et al.’s [8] D statistical coefficient, because it has
been reported as the most reliable dispersion measure [9, 190-191]. Juilland’s D is
calculated as:

D = 1− V√
n−1

(10)

where n is the number of equally sized chunks in a text and V is the variation
coefficient given by:7

V =
σ

v̄
(11)

where v̄ is the mean frequency of a word in the different chunks and σ is the stan-
dard deviation of the frequencies in the chunks given by:

σ =

√
∑

n
i=1(vi− v̄)2

n−1
(12)

7The parameter n has to be set manually. In our experiments we observed little effect of the
parameter within the interval [5,50] and set its value to n = 20.

 45

rank ground truth subject baseline our system

1 (Janneman, Jan, ventje ‘lit-
tle man’)

Janneman Janneman

2 (heks ‘witch’, wijf ‘hag’) zak ‘bag’ heks ‘witch’
3 (tuinman ‘gardener’,

haagknipper ‘hedge cut-
ter’), (arbeider ‘worker’),
(slootgraver ‘ditch digger’,
man)

heks ‘witch’ kat ‘cat’

4 (kat ‘cat’) huisje ‘small house’ slootgraver ‘ditch digger’
5 - winkel ‘store’ wijf ‘hag’
6 - pond ‘pound’ haagknipper ‘hedge cutter’
7 - deur ‘door’ arbeider ‘worker’
8 - kat ‘cat’ -
9 - neen ‘no’ -

Table 1: Expert ranking and the results of the subject baseline (only the first 9 out
of 33 results are shown) and our system for the story Janneman in het papieren
huisje (‘The Devil (Witch) Carries the Hero Home in a Sack’). Alternative names
in the ground truth that refer to the same entity are placed between brackets.

Its values range from 0 (most uneven distribution) to 1 (most even distribution of
a word across all chunks). To give an impression of some of the values different
words can take, consider once more Figure 1. The vertical dotted lines mark the
chunk boundaries at n = 10. Both the farmer and the fox are referred to four
times, but because the farmer is more evenly distributed over the text it has a higher
dispersion value, D = 0.53 and D = 0.38, respectively.

5 Experiment

For all documents in our corpus we extract a ranked list of actors. In the ideal case,
the top of these lists contain the actors of a story. The extent to which this is the
case reflects how well relevant items are found by our method and how well they
are ranked according to the dispersion coefficient D. The results are evaluated by
means of Mean Average Precision (MAP).

The subject of a sentence is often an entity that performs an action. Hence,
subjects typically have a high chance of being an actor. We therefore compare our
approach to a baseline in which all nouns and proper names are tagged as actors if
they are classified by the dependency parser of Frog to hold a subject relation.

As an example, Table 1 presents the expert ranking, the results of the subject
baseline (only the first 9 out of 33 results are shown) and the system for the story
Janneman in het papieren huisje (‘The Devil (Witch) Carries the Hero Home in
a Sack’). Alternative names in the ground truth that refer to the same entity are

 46

subject baseline system

complete top three complete top three

frequency ranking .739 .854 .909 .895
dispersion ranking .792 .878 .918 .9

Table 2: MAP for both the subject baseline and the system using the frequency
count ranking method and the dispersion based method. Scores are given for the
complete result lists and for the top three items in the result lists against the first
three ranks in the annotations.

subject baseline system

dispersion frequency dispersion frequency

subject baseline
dispersion – p < .0001 p < .0001 p < .0001
frequency – p < .0001 p < .0001

system
dispersion – p < .03
frequency –

Table 3: Pairwise Wilcoxon Signed-Rank Test using the dispersion and frequency
ranking method for both the subject baseline model and our system.

placed between brackets. Since the annotations make no distinction between a
canonical name of an actor and variants of that name, all alternative names are
included in the set of relevant names. As noted in Section 3, we did not attempt to
resolve coreferences. We thus make the simplifying assumption that all names in
the result lists are to be considered as unique entities. The Average Precision (AP)
for the baseline is .83. The system outperforms the baseline with a perfect score of
1.0, because it has identified solely relevant items.

We compare the proposed ranking method of actors to a method in which re-
trieved items are ranked according to their frequency of occurrence. The hypothe-
sis is that the dispersion method should do a better job in distinguishing important
from less important actors, because they are more important throughout the story
and not only in small text spans.

Table 2 gives a summary of the results. The subject baseline model performs
fairly well with a MAP of .739 using frequency ranking and .792 using dispersion
ranking. Our system outperforms the baseline markedly with a score of .918. For
our system, there is a minor difference between the two ranking methods.

To test whether the performance differences between the models are signifi-
cant, we computed for all four models the AP for each document in the corpus.
We then performed pairwise two-sided Wilcoxon Signed-Rank tests of which the
resulting p values can be found in Table 3. All performance differences are sig-

 47

subject baseline system

dispersion frequency dispersion frequency

subject baseline
dispersion – p > .2 p > .1 p > .2
frequency – p > .05 p > .1

system
dispersion – –
frequency –

Table 4: Pairwise Wilcoxon Signed-Rank Test using the dispersion and frequency
ranking method for both the subject baseline and our system. AP is computed for
the top three items in the result lists against the top three ranks in the annotations.

nificant. The significant differences between the two ranking methods support the
hypothesis that dispersion is a helpful means to distinguish important actors from
more peripheral actors.

Although the MAP shows that the system is well capable of retrieving mostly
relevant items in the top retrieved results, it does not tell us whether the first, say,
three items are the most important actors in a story. Recall that the annotations of
the stories include a ranked list of actors. This allows us to evaluate whether the
top retrieved results are not only relevant but contain the most important actors –
as conceived by the annotators – as well.

The cast of a typical story contains only a few main actors and a range of
supporting actors. It has one or two heroes, an opponent of the hero and either
a wanted object or a helper of the hero. We recalculate the MAP scores using a
constrained set of possible relevant actors in which only the first three ranks in the
annotations are included. Using this set of relevant items, we compute the precision
for the three highest ranked actors in the result lists (see Table 2). Again the system
outperforms the baseline, albeit marginally, with a MAP of .895 using frequency
ranking and .9 using the dispersion method and .878 for the baseline model using
dispersion ranking and .854 using frequency ranking.

We performed the same Wilcoxon Signed-Rank tests as before to test for sig-
nificance. Table 4 presents the results. We see that there are some small effects,
but none of the performance differences are significant. This is interesting, because
for the complete result lists, we saw significant differences between all combina-
tions of systems (see Table 3). This suggests that the performance differences
concentrate on the ranking of less important actors. It is also in this scope that the
dispersion of a term is an effective indicator if its importance.

6 Conclusion

The approach taken in this paper to extract the cast from fictional texts proves
to be successful. In line with literary scholars our results support the idea that

 48

intentionality serves as a strong feature to identify actors. The intentionality is
reflected in the use of two related but structurally different linguistic constructions:
direct and indirect speech. By extracting these constructions from a text we obtain
a high-precision method for retrieving the cast of a story. The system performs
significantly better than the baseline model that marks all nouns in subject positions
as cast members.

Besides the mere identification of actors, we proposed a ranking method of the
actors based on the dispersion of actors over a text. The hypothesis was that actors
that are more evenly distributed throughout the text are more important than actors
that only appear in short text spans. The results showed that ranking by means of
dispersion gives a significant performance gain over ‘simple’ frequency counts.

We focus our recommendations for future research on two points. First, the
system proposed in this paper depends heavily on the presence of direct and in-
direct speech. However, neither is necessarily present in every text. To make the
system more robust, it should be able to deal with these texts as well. A good start-
ing point to improve the stability is to use the output of the present system to learn
about contexts other than direct and indirect speech in which actors appear.

We made the simplifying assumption that all retrieved items are unique entities,
whereas in fact they corefer to a small subset of entities. Our second point of future
work is directed towards resolving these coreferences, which will require adapta-
tion of existing coreference resolution models to the domain of fictional texts.

7 Acknowledgments

The work on which this paper is based has been supported by the Computational
Humanities Programme of the Royal Netherlands Academy of Arts and Sciences,
as part of the Tunes & Tales project.

References

[1] Mieke Bal. Narratology, Introduction to the Theory of Narrative. University
of Toronto Press, Toronto Buffalo London, third edition, 2009.

[2] Thierry Declerck, Nikolina Koleva, and Hans-Ulrich Krieger. Ontology-
based incremental annotation of characters in folktales. In Proceedings of
the 6th EACL Workshop on Language Technology for Cultural Heritage, So-
cial Sciences, and Humanities, pages 30–34, 2012.

[3] David Elson and Kathleen McKeown. Automatic attribution of quoted speech
in literary narrative. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, pages 1013–1019, 2010.

[4] Kevin Glass and Shaun Bangay. A naïve, salience-based method for speaker
identification in fiction books. In Proceedings of the 18th Annual Symposium

 49

of the Pattern Recognition Association of South Africa (PRASA ’07), pages
1–6, 2007.

[5] Hui-Ngo Goh, Lay-Ki Soon, and Su-Cheng Haw. Automatic identification of
protagonist in fairy tales using verb. In Pang-Ning Tan, Sanjay Chawla, Chin
Ho, and James Bailey, editors, Advances in Knowledge Discovery and Data
Mining, volume 7302 of Lecture Notes in Computer Science, pages 395–406.
Springer Berlin / Heidelberg, 2012.

[6] Algirdas Julien Greimas. Sémantique structurale. Larousse, Paris, 1966.

[7] Walter Haeseryn. Algemene Nederlandse Spraakkunst. Groningen/Deurne:
Marinus Nijhoff/Wolters Plantyn, 1997.

[8] Alphonse G. Juilland, Dorothy R. Brodin, and Catherine Davidovitch. Fre-
quency Dictionary of French Words. Mouton de Gruyter, 1970.

[9] Michael P. Oakes. Statistics for Corpus Linguistics. Edinburgh University
Press, Edinburgh, 1998.

[10] Tim O’Keefe, Silvia Pareti, James Curran, Irena Koprinska, and Matthew
Honnibal. A sequence labelling approach to quote attribution. In Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 790–799,
2012.

[11] Josef Ruppenhofer, Caroline Sporleder, and Fabian Shirokov. Speaker attri-
bution in cabinet protocols. In N. Calzolari, K. Choukri, B. Maegaard, J. Mar-
iani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, editors, Proceedings of
the Seventh conference on International Language Resources and Evalua-
tion LREC10, pages 2510–2515. European Language Resources Association
(ELRA), 2010.

[12] Jacques Rudolf Willem Sinninghe. Volkssprookjes uit Nederland en Vlaan-
deren. Kruseman, Den Haag, 1978.

[13] Karina Van Dalen-Oskam. Names in novels: an experiment in computational
stylistics. Literary and Linguistic Computing, 2012.

[14] Antal Van den Bosch, Bertjan Busser, Walter Daelemans, and Sander Can-
isius. An efficient memory-based morphosyntactic tagger and parser for
Dutch. In F. Van Eynde, P. Dirix, I. Schuurman, and V. Vandeghinste, editors,
Selected Papers of the 17th Computational Linguistics in the Netherlands
Meeting, pages 99–114, Leuven, Belgium, 2007.

[15] Arie Verhagen. Constructions of Intersubjectivity, Discourse, Syntax and
Cognition. Oxford Linguistics. Oxford University Press, Oxford New York,
2005.

 50

Bulgarian-English Sentence- and Clause-Aligned
Corpus

Svetla Koeva, Borislav Rizov, Ekaterina Tarpomanova,
Tsvetana Dimitrova, Rositsa Dekova, Ivelina Stoyanova,

Svetlozara Leseva, Hristina Kukova, Angel Genov

Department of Computational Linguistics,
Institute for Bulgarian Language, BAS

52 Shipchenski Prohod Blvd., 1113 Sofia, Bulgaria
E-mail: {svetla, boby, katja, cvetana}@dcl.bas.bg,
{rosdek, iva, zarka, hristina, angel}@dcl.bas.bg

Abstract

The paper presents the partially automatically annotated and fully manually
validated Bulgarian-English Sentence- and Clause-Aligned Corpus. The dis-
cussion covers the motivation behind the corpus development, the structure
and content of the corpus, illustrated by statistical data, the segmentation and
alignment strategy and the tools used in the corpus processing. The paper
sketches the principles of clause annotation adopted in the creation of the
corpus and addresses some issues related to interlingual asymmetry. The pa-
per concludes with an outline of some applications of the corpus in the field
of computational linguistics.

1 Introduction and motivation

Although parallel texts can be aligned at various levels (word, phrase, clause, sen-
tence), clause alignment has proved to have advantages over sentence and word
alignment in certain NLP tasks. Due to the fact that many of the challenges encoun-
tered in parallel text processing are related to (i) sentence length and complexity,
(ii) the number of clauses in a sentence and (iii) their relative order, clause seg-
mentation and alignment can significantly help in handling them. This observation
is based on the linguistic fact that differences in word order and phrase structure
across languages are better captured and formalised at clause level rather than at
sentence level. As a result, monolingual and parallel text processing at clause level
facilitates the automatic linguistic analysis, parsing, translation, and other NLP
tasks.

Consequently, this strand of research has incited growing interest with regard
to machine translation (MT). Clause-aligned corpora have been successfully em-

 51

ployed in the training of models based on clause-to-clause translation and clause
reordering in Statistical Machine Translation (SMT) – see [1] for syntax-based
German-to-English SMT; [9] for English-to-Japanese phrase-based SMT; [2] for
Japanese-to-English SMT; [8] for English-Hindi SMT, among others. Clause align-
ment has also been suggested for translation equivalent extraction within the exam-
ple-based machine translation framework [7].

The Bulgarian-English Sentence- and Clause-Aligned Corpus (BulEnAC) was
created as a training and evaluation data set for automatic clause alignment in the
task of exploring the effect of clause reordering on the performance of SMT [6].

The paper is organised as follows. Section 2 describes the structure, content
and format of the BulEnAC and the annotation tool. Section 3 summarises the
approach to sentence identification and alignment. Section 4 outlines the approach
to clause splitting and alignment followed by a discussion on the principles of
clause annotation. Section 5 addresses the possible applications of the corpus.

2 Structure of the BulEnAC

2.1 Basic structure

The BulEnAC is an excerpt from the Bulgarian-English Parallel Corpus – a part
of the Bulgarian National Corpus (BulNC) of approximately 280.8 million tokens
and 8.2 million sentences for Bulgarian and 283.1 million tokens and 8.9 million
sentences for English. The Bulgarian-English Parallel Corpus has been processed
at several levels: tokenisation, sentence splitting, lemmatisation. The processing
has been performed using the Bulgarian language processing chain [5] for the Bul-
garian part and Apache OpenNLP1 with pre-trained modules for the English part2.

The BulEnAC consists of 366,865 tokens altogether. The Bulgarian texts com-
prise 176,397 tokens in 14,667 sentences, with average sentence length 12.02
words. The English part totals 190,468 tokens and 15,718 sentences (12.11 words
per sentence). The number of clauses in a sentence averages 1.67 for Bulgarian
compared with 1.85 clauses per sentence for English.

The text samples are distributed in five broad categories, called ’styles’. A style
is a general complex text category that combines the notions of register, mode,
and discourse and describes the intrinsic characteristics of texts in relation to the
external, sociolinguistic factors, such as the function of the communication act.

Clause-aligned corpora typically contain a limited number of sentences and
cover a particular style, domain or genre3, such as biomedical texts [3], legal texts
[4], etc.

1http://opennlp.apache.org/
2The OpenNLP implementations used in the development of the BulEnAC were made by Ivelina

Stoyanova.
3The further subdivision of the styles includes categorisation into domains (e.g., Administrative:

Economy, Law, etc.) and genres (e.g., Fiction: novel, poem, etc.).

 52

The goal in creating the corpus was to cover diverse styles so as to be able to
make judgments on the performance of the alignment methods across different text
types. As a result, the corpus consists of the following categories: Administrative
texts (20.5%), Fiction (21.35%), Journalistic texts (37.13%), Science (11.16%) and
Informal/Fiction (9.84%). Figure 1 shows a comparison of the average sentence
length across styles for the two languages.

Figure 1: Average length of Bulgarian and English sentences (in terms of number
of clauses) across the different styles.

2.2 Format of the Corpus

The files of the corpus are stored in a flat XML format. The words in the text are
represented as a sequence of XML elements of the type word. Each word element
is defined by a set of attributes that correspond to different annotation levels:

1. Lexical level (lemmatisation) – the attributes w and l denote the word form
and the lemma, respectively.

2. Syntactic (sentence level) – the combination of two attributes, e=True and
sen=senID, denotes the end of each sentence and the corresponding id of
the sentence in the corpus.

3. Syntactic (clause level) – the attribute cl corresponds to the id of the clause
in which the word occurs.

4. Syntactic (applied only to conjunctions) – the attribute cl2 is used for con-
junctions and other words and phrases that connect two clauses4, and denotes
the id of the clause to which the current clause is connected. The attribute m

4For brevity and simplicity such words and phrases are also termed ’conjunctions’.

 53

defines the type of the relation between the two clauses cl and cl2 (coordi-
nation or subordination), the direction of the relation (in the case of subordi-
nation) and the position of the conjunction with respect to the clauses. The
inter-clausal relations are discussed in more detail in Section 4.2.

5. Alignment – the attributes sen_al and cl_al define sentence and clause
alignment, respectively. Corresponding sentences/clauses in the two parallel
texts are assigned the same id.

Example (1) shows the basic format of the corpus files.

Example 1 The EU says Romania needs reforms.

<word cl="864" cl_al="6c8f" l="the" w="The"/>
<word cl="864" l="eu" w="EU"/>
<word cl="864" l="say" w="says"/>
<word cl="865" cl2="864" cl_al="19f" l="PUNCT" m="N_S" w="===="/>
<word cl="865" l="Romania" w="Romania"/>
<word cl="865" l="need" w="needs"/>
<word cl="865" e="True" l="reform" sen="bc90" w="reforms.}"/>

Empty words (w="====") are artificial elements introduced at the beginning of
a new clause when the conjunction is not explicit or the clauses are connected by
means of a punctuation mark. For simplicity of annotation punctuation marks are
not identified as independent tokens but are attached to the preceding token.

The flat XML format is more suitable for the representation of discontinuous
clauses than a hierarchical one; at the same time it is powerful enough to repre-
sent the annotation and to encode the syntactic hierarchy between pairs of clauses
through the clause relation type.

2.3 The Annotation Tool

The manual sentence and clause alignment, as well as the verification and post-
editing of the automatically performed alignment were carried out with a specially
designed tool – ClauseChooser5. It supports two kinds of operating modes: a
monolingual one intended for manual editing and annotation of each part of the
parallel corpus, and a multilingual one that allows annotators to align the parallel
units.

The monolingual mode includes: (i) sentence splitting; (ii) clause splitting; (iii)
correction of wrong splitting (merging of split sentences/clauses); (iv) annotation
of conjunctions; and (v) identification of the type of relation between pairs of con-
nected clauses. Figure 2 shows the monolingual mode of ClauseChooser used for
sentence and clause segmentation and annotation of clause relations. After having
been segmented in the bottom left pane, the clauses are listed to the right. The type

5ClauseChooser was developed at the Department of Computational Linguistics by Borislav Ri-
zov.

 54

of relation for each pair of syntactically linked clauses is selected with the grey
buttons N_N, N_S, etc.

Figure 2: View of the monolingual mode of ClauseChooser

The multilingual mode uses the output of the monolingual sentence and clause
splitting and supports: (i) manual sentence alignment; (ii) manual clause align-
ment.

3 Sentence segmentation and alignment

Both the Bulgarian and the English parts of the corpus were automatically sentence-
split and sentence-aligned. The sentence segmentation of the Bulgarian part was
performed with the BG Sentence Splitter. The tool identifies the sentence bound-
aries in a raw Bulgarian text using regular rules and a lexicon [5]. The English part
was sentence-split using an implementation of an OpenNLP6 pre-trained model.
Sentence alignment was carried out automatically using HunAlign7, and manually
verified by experts.

The dominant sentence alignment pattern is 1:1 that stands for one-to-one cor-
respondences in the two languages. The 0:1 and 1:0 alignments designate that a
sentence in one of the languages is either not translated, or is merged with another
sentence. Table 1 shows the distribution of the sentences in the corpus across align-
ment types. The category ’other’ covers models with low frequency, such as 1:3,
3:1, 2:2, etc.

6http://opennlp.apache.org/
7http://mokk.bme.hu/resources/hunalign/

 55

BG:EN alignment frequency in % of all
0:1 1187 7.60
1:0 225 1.44
1:1 13697 87.74
1:2 264 1.69
2:1 187 1.20
other 15 0.33

Table 1: Sentence alignment categories

4 Clause segmentation and alignment

A pre-trained OpenNLP parser8 was used to determine the clause boundaries in
the English part, followed by manual expert post-editing. The Bulgarian sentences
were split into clauses manually. Clause segmentation is a language-dependent
task that should be performed in compliance with the specific syntactic rules and
the established grammar tradition and annotation practices for the respective lan-
guages. This approach ensures the authenticity of the annotation decisions and
helps in outlining actual language-specific issues of multilingual alignment.

4.1 Clause alignment

After clause segmentation took place, the parallel clauses in the English and the
Bulgarian texts were manually aligned. Alignment was performed only between
clauses located within pairs of corresponding sentences.

The prevalent alignment pattern for clauses is also 1:1. However, due to some
distinct syntactic properties of the languages involved, the different lexical choices,
’information packaging’ patterns, etc., various asymmetries arise. The non-straight-
forward alignments have proved to be considerably more pronounced at clause than
at sentence level as reflected in the higher frequency of clause alignment patterns
of the type 1:0, 1:N and N:M (N, M>1), and the greater number of patterns that are
represented by a considerable number of instances (Table 2).

1:0 and 0:1 alignments are found where a clause in one language does not have
a correspondence in the other. For instance, in Example (2) the clause he said (2a)
is not translated to Bulgarian (2b)9.

Example 2
(a) [La Guardia, step on it!], [he said.]

8http://opennlp.apache.org/
9The Bulgarian examples are transliterated and glossed. We adopted word-by-word glossing with

the following abbreviations (cf. Leipzig Glossing Rules, http://www.eva.mpg.de/lingua/pdf/
LGR08.02.05.pdf): N – noun; ADJ – adjective; ADV – adverb; PTCP – participle; PST – past; PRS
– present; SG – singular; PL – plural; ACC – accusative; COMP – comparative; DEF – definite.

 56

(b) [La Guardia, po-barzo!]
[La Guardia, quick-ADV;COMP!]

1:N, N:1 patterns (N>1) stand for alignments where a given clause corresponds
to a complex of (two or more) clauses. A systemic asymmetry is represented by the
participial -ing and -ed clauses in English – clause 2 in (3a), and their Bulgarian
counterparts. Bulgarian lacks non-finite clauses, therefore syntactic units that are
headed by non-finite verbs are treated as participial constructions (the bold face
part of the sentence in (3b)). In Example (3), the different clause structure of the
English and the Bulgarian sentences leads to 2:1 alignment.

Example 3
(a) [1 The Ministry announced a redistribution of financing,] [2 ==== shifting

funds to private sector projects.]

(b) [1 Ministerstvoto obyavi prerazpredelenie na
Ministry-the;DEF announce-PST;SG redistribution-N;SG of

finansiraneto, prehvarlyayki fondovete kam
financing-the;N;DEF, shifting-PTCP fund-the;PL;DEF to

proekti v chastniya sektor.]
project-PL in private-the;DEF sector.]

Another frequent pattern is illustrated in Example (4). The two subordinate
clauses marked in the sentence as clauses 2 and 3 in (4a), are translated as preposi-
tional phrases PP2 and PP3, respectively10. As a result, the Bulgarian translation of
the 3-clause English sentence consists of a single clause (4b); hence the alignment
pattern is 3:1.

Example 4
(a) [1 This Regulation does not go beyond] [2 what is necessary] [3 to achieve

those objectives.]

(b) Nastoyasthiyat reglament ne otiva po-dalech
Present-the;DEF regulation not go-PST;SG beyond-ADV;COMP

(PP2 ot neobhodimoto (PP3 za postigane na
from necessary-the;DEF for achievement-N of

tezi tseli)).
this-PL objective-PL.

Alignments of the type N:M (N,M>1) represent complex-to-complex corre-
spondence and are relatively rare (0.84% of the clauses, Table 2). Example (5)
illustrates an alignment pattern of the type 3:2. The English matrix clause 1 in (5a)

10The phrase labels are given for expository purposes. The clause-aligned corpus does not include
annotation of phrasal categories.

 57

is translated into Bulgarian (5b) by means of clause 1 and the part of clause 2 in
boldface. The object of the English clause 1 measures (BG: merki) is the subject
of the Bulgarian subordinate clause 2 da badat vzeti merki... (EN: for measures
to be taken...) that roughly corresponds to the prepositional phrase in the English
counterpart for measures. On the other hand, the subordinate clauses 2 and 3 in the
English sentence are rendered as the prepositional phrase PP in Bulgarian (5b).

Example 5
(a) [1 He urged for measures] [2 to help displaced persons] [3 return to their

homes.]
(b) [1 Toy nastoya] [2 da badat vzeti

He insist-PST;SG to be-PRS;PL take-PTCP;PL

merki (PP za podpomagane na zavrashtaneto
measure-PL for help-N of returning-the;N;DEF

na prinuditelno izselenite po tehnite domove).]
of forcefully displaced-PTCP;DEF;PL to their home-PL.

The distribution of the alignment pairs is given in Table 2.

BG:EN alignment frequency in % of all
0:1 1745 7.05
1:0 482 1.95
1:1 18997 76.80
1:2 2256 9.12
1:3 239 1.33
1:4 99 0.40
2:1 621 2.51
2:2 87 0.32
other 128 0.52

Table 2: Clause alignment categories.

Non-straightforward alignment patterns account for considerable number of
0:1 (7.05%) and 1:2 (9.12%) clause alignments in Bulgarian-English, with the re-
verse types amounting to just 1.95% (1:0) and 2.51% (2:1), respectively. These
results suggest that a stronger tendency exists for 1:N (N>1) correspondences for
Bulgarian-to-English than for English-to-Bulgarian. Some of the factors for this
trend include the different segmentation into clauses as in the case of participial
constructions versus participial clauses, and the rendition of prepositional phrases
as clauses or vice versa.

4.2 Annotation of clause relations

The BulEnAC is supplied with partial syntactic annotation that includes:

 58

(i) delimiting the sentence and clause boundaries;
(ii) identifying the type of relation (subordination or coordination) between the
clauses in a sentence;
(iii) identifying the linguistic markers that introduce clauses – conjunctions, ad-
verbs, pronouns, punctuation marks, etc.

A clause relation is defined between a pair of clauses. We were interested in the
type of relation between the clauses, the ordering of clauses that stand in a given
relation, the position of the conjunction, and language-specific clause-to-clause or-
dering constraints. With respect to the relation each clause in the pair is identified
as either main or subordinate with at least one being main. In this paper the term
main is used in a broader sense that encompasses both the meaning of an inde-
pendent clause and that of a superordinate clause. Thus, main (N) denotes either a
clause with equal status as the other member of the pair or one that is superordinate
to it. Subordinate (S) status is assigned to a clause that is syntactically subordinate
to the other member of the pair.

The status of the clauses is defined with respect to a particular clause relation
and is therefore relative. Consequently, the relationship between a pair of coordi-
nated independent or coordinated subordinate clauses is both N_N, cf. Example (6)
for independent and Example (7) for dependent clauses. In the case of coordinated
subordinate clauses, the dependent status of the pair is denoted by the relation
N_S established between their superordinate and the first of the subordinate clauses
(7b).

Example 6
(a) [N1 I usually forget things,] [N2 butN1_N2 I remembered it!]

(b) [N1 He asked her] [S ifN1_S he could pick her up on the morning of the
experiment] [N2 andN1_N2 she agreed gratefully.]

Example 7
(a) [1 Dutch police authorities said] [2 they were illegal immigrants] [3 and

would be deported.]

(b) [1 N Dutch police authorities said] [2 S ====N_S they were illegal immi-
grants]

(c) [2 N1 they were illegal immigrants] [3 N2 andN1_N2 would be deported.]

A syntactically subordinate clause that is superordinate to another clause has
the status main with respect to it. For instance, in (8a) clause 2 is subordinate to
the matrix clause – clause 1 (8b), and a main clause with respect to clause 3 (8c):

Example 8
(a) [1 This Regulation does not go beyond] [2 what is necessary] [3 to achieve

those objectives.]

 59

(b) [1 N This Regulation does not go beyond] [2 S whatN_S is necessary]

(c) [2 N ...what is necessary] [3 S toN_S achieve those objectives.]

In the languages under consideration the following three clause ordering mod-
els cover almost all the cases: N_N, N_S and _SN.

4.3 More on translational asymmetries

Translational asymmetries stem also from different information distribution, lexi-
cal and grammatical choices, reordering of the clauses with respect to each other
and (cross-clause boundary) reordering of constituents. In this section, we point
out two types of asymmetry concerning the internal structure of clauses and their
relative order within the sentence.

A frequent pattern found in the corpus is the selection of verbs with different
types of complements motivated by grammatical structure, lexical choice or other
factors. In the aligned sentences in Example (9) the choice of the Bulgarian verb
nastoyavam (insist) as the translation equivalent of the English object-control verb
urge predetermines the difference in the structure of the matrix and the subordinate
clause in the two languages – in (9a) Croatia is the object of the main clause,
whereas its counterpart Harvatska is the subject of the subordinate clause in (9b).

Example 9
(a) [N European Parliament urges Croatia] [S to fully cooperate with the Tri-

bunal.]

(b) [N Evropeyskiyat parlament nastoyava] [S Harvatska
European-the;DEF Parliament insist-PRS;SG Croatia

da satrudnitchi napalno na tribunala.
to cooperate-PRS;SG fully to tribunal-the;DEF.

Another frequent example is the different order of the clauses in a sentence.
For instance, in Example (10), the English clauses N_S (10a) are in reverse order
as compared with the Bulgarian translation – _SN (10b).

Example 10
(a) [N She had to make a detour] [S to get to the stove.]

(b) [S Za da stigne do pechkata,]
In order to get-PRS;SG to stove-the;DEF

[N tya tryabvashe da mine pokray tyah.]
she must-PST;SG to go-PRS;SG past they-ACC;PL.

Translation asymmetries represent a systemic phenomenon and account for the
inter-lingual variations in grammatical structure, lexicalisation patterns, etc. At the

 60

same time, they often give rise to wrong alignments, mistranslations, and other
errors. Therefore, the successful identification of such phenomena and their proper
description and treatment is a prerequisite for improving the accuracy of alignment
and translation models.

5 Conclusion and applications

The development of the Bulgarian-English Sentence- and Clause-Aligned Corpus
is a considerable advance towards establishing a general framework for syntactic
annotation and multilingual alignment, as well as for building significantly larger
parallel annotated corpora. The manual annotation and/or validation has ensured
the high quality of the corpus annotation and has made it applicable as a training
resource for various NLP tasks. As the goal was to explore the influence of clause
alignment, further levels of alignment were only partially attempted as a technique
enhancing the alignment method.

The quality of the manual clause splitting, relation type annotation and align-
ment was guaranteed by inter-annotator agreement. Each annotator made at least
two passes of each Bulgarian and English file, one performed after the final revi-
sion of the annotation conventions. Clause segmentation was additionally validated
at the stage of clause alignment.

The NLP applications of the BulEnAC encompass at least three interrelated
areas: (i) developing methods for automatic clause splitting and alignment; (ii)
developing methods for clause reordering to improve the training data for SMT [6];
(iii) word and phrase alignment. These lines of research will facilitate the creation
of large-scale syntactically and semantically annotated corpora. In the field of
the humanities the corpus is a valuable resource for studies in lexical semantics,
comparative syntax, translation studies, language learning, cross-linguistic studies.

The BulEnAC will be made accessible to the scholarly community through the
unified multilingual search interface of the Bulgarian National Corpus11.

6 Acknowledgements

The present paper was prepared within the project Integrating New Practices and
Knowledge in Undergraduate and Graduate Courses in Computational Linguis-
tics (BG051PO001-3.3.06-0022) implemented with the financial support of the
Human Resources Development Operational Programme 2007-2013 co-financed
by the European Social Fund of the European Union. The Institute for Bulgarian
Language takes full responsibility for the content of the present paper and under no
conditions can the conclusions made in it be considered an official position of the
European Union or the Ministry of Education, Youth and Science of the Republic
of Bulgaria.

11http://search.dcl.bas.bg

 61

References

[1] B. Cowan, I. Kucerova, and M. Collins. A discriminative model for tree-to-tree
translation. In Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, Sydney, pages 232–241, 2006.

[2] C.-L. Goh, T. Onishi, and E. Sumita. Rule-based reordering constraints for
phrase-based SMT. In Proceedings of the 15th International Conference of
the European Association for MT, May 2011, pages 113–120, 2011.

[3] J.-D. Kim, T. Ohta, and J. Tsujii. Corpus annotation for mining biomedical
events from literature. BMC Bioinformatics, 9(10), 2008.

[4] C. Kit, J.J. Webster, K. Kui Sin, Pan H., and H. Li. Clause alignment for bilin-
gual Hong Kong legal texts: A lexical-based approach. International Journal
of Corpus Linguistics, 9(1):29–51, 2004.

[5] S. Koeva and A. Genov. Bulgarian language processing chain. In Proceed-
ings of Integration of Multilingual Resources and Tools in Web Applications.
Workshop in conjunction with GSCL 2011, University of Hamburg, 2011.

[6] S. Koeva, B. Rizov, E. Tarpomanova, Ts. Dimitrova, R. Dekova, I. Stoyanova,
S. Leseva, H. Kukova, and A. Genov. Application of clause alignment for sta-
tistical machine translation. In Proceedings of the Sixth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-6), Korea, 2012.

[7] S. Piperidis, H. Papageorgiou, and S. Boutsis. From sentences to words and
clauses. In J. Veronis, editor, Parallel Text Processing, Alignment and Use of
Translation Corpora, pages 117–138. Kluwer Academic Publishers, 2000.

[8] A. Ramanathan, P. Bhattacharyya, K. Visweswariah, K. Ladha, and A. Gandhe.
Clause-based reordering constraints to improve statistical machine translation.
In Proceedings of the 5th International Joint Conference on NLP, Thailand,
November, pages 1351–1355, 2011.

[9] K. Sudoh, K. Duh, H. Tsukada, T. Hirao, and M. Ngata. Divide and trans-
late: improving long distance reordering in statistical machine translation. In
Proceedings of the Joint 5th Workshop on SMT and Metrics MATR, pages 418–
427, 2010.

 62

Cleaning up and Standardizing a Folktale Corpus
for Humanities Research

Iwe Everhardus Christiaan Muiser1, Mariët Theune2 and Theo Meder3

1Database group, University of Twente, Enschede, the Netherlands
2Human Media Interaction, University of Twente, Enschede, the Netherlands

3Meertens Institute, Amsterdam, the Netherlands

E-mail: e.c.muiser@utwente.nl

Abstract

Recordings in the field of folk narrative have been made around the world
for many decades. By digitizing and annotating these texts, they are frozen
in time and are better suited for searching, sorting and performing research
on. This paper describes the first steps of the process of standardization and
preparation of digital folktale metadata for scientific use and improving avail-
ability of the data for humanities and, more specifically, folktale research.
The Dutch Folktale Database has been used as case study but, since these
problems are common in all corpora with manually created metadata, the
explanation of the process is kept as general as possible.

1 Introduction

Recordings in the field of folk narrative have been made around the world for many
decades. Storage, annotation and studies of these corpora by digital means how-
ever, have only begun just recently. By annotating and creating digital versions
of these tales, they are virtually ‘frozen’ in time, which opens up a window for
researchers to compare historical versions of narratives. Many types of studies can
be efficiently done by searching and comparing the tales once they are put in a dig-
ital framework [1]. By adding metadata such as keywords, dates, and geographical
locations to the original texts it becomes easier to search, categorize and navigate
through a corpus. An additional advantage of digitization is that the information
can now be shared with researchers and other interested people all over the world.
This creates wonderful opportunities to analyze and compare the similarities and
differences between folktales in various cultures. In general the more metadata is
present, the more extensive comparative research can be performed.

For a few decades now, the Meertens Institute in Amsterdam has been collect-
ing folktales. Since 1994 these tales are being digitized and put into the Dutch

 63

Folktale Database (DFDB), which came online in 2004 (www.verhalenbank.nl).
Over the years, the descriptive metadata assigned to these tales have undergone
several transformations due to periodically changing demands. Data fields have
been added to describe and identify the original texts in increasing detail, for in-
stance with an indication of the motifs in the text, the creation and mutation date,
and whether the tale is extreme in nature. Today, the database contains roughly
42.000 tales, all of which are provided with a rich set of manually added metadata.
Several tens of thousands of texts are still waiting for annotation or digitization,
and many circulating Dutch folktales have not even been recorded yet.

The Dutch folktale collection in the DFDB is currently being used within the
FACT project1 to investigate the automatic annotation of folktales with metadata
such as genre, language and keywords. The project aims to support humanities
research by developing new methods for automatic metadata extraction, classifi-
cation and clustering of folktales. This is a challenging task because many of the
folktale texts have been taken down within the context of oral performance, and
can contain vernacular language (including laughter, pauses, hesitations, incom-
plete and imperfect sentences etc.), dialect, slang, and mixed languages. This often
causes traditional natural language processing (NLP) methods to be insufficient.

The manually annotated metadata of the folktale corpus are a very valuable
resource for the automatic annotation of folktale texts. Information about the date
and place of narration is likely to be of use for automatic language identification,
and in experiments on classification of folk narrative genres we have shown that
metadata such as keywords, summary, and date can be used to improve perfor-
mance [2]. However, for the current metadata annotations to be optimally useful
for training and testing automatic classifiers, an organized metadata setup has to be
present, and the number of errors and inconsistencies in the data fields has to be
minimized. For example, our language identification experiments may have been
hampered by inconsistent labeling of mixed language documents [3].

Since the annotation of folktales has been done by hand by about sixty different
annotators over a large period of time, a fair portion of errors and deviations from
the input standard can be expected. Van den Bosch et al. have observed error rates
up to 5% in cultural heritage databases [4].

This paper describes the first steps of the process of standardization and prepa-
ration of the DFDB metadata for scientific use, improving availability of the data
for humanities and, more specifically, folktale research. The paper focuses on the
Dutch Folktale Database, but, since these problems are common in all corpora
with manually created metadata, the explanation of the process is kept as general
as possible. In Section 2, some light is shed on common errors in cultural heritage
databases. Section 3 discusses metadata standards. The actual standardization of
metadata values of our folktale corpus is described in Section 4.

1Folktales As Classifiable Texts, http://www.elab-oralculture.nl/fact

 64

2 Errors and inconsistencies in cultural heritage databases

Many digitized cultural heritage collections like the DFDB contain information
that was created manually. Most information has been stored in free text formatted
databases, in many respects functioning as a digital encyclopedia, without taking
into account the possibilities of digital analysis laying ahead. The free text input
left room for freedom of annotation, comments and explanations. This is benefi-
cial for free text searching but disastrous for ordering data and structured search.
It makes browsing and visualization a very challenging task. Standardization of
metadata is therefore of great importance for the field.

Manual free text input also allows mistakes and inconsistencies to easily sneak
in. Van den Bosch et al. [4] discuss three types of common errors in cultural her-
itage databases. Items with typing and spelling errors are unlikely to turn up in
search results. Wrong column errors occur when the content of database columns
has been misplaced or switched. Content errors are usually due to wrong, or alter-
native, interpretations and classifications of corpus items (in our case, folktales).
Fixing these errors is a step that can be made after clearing up more generic incon-
sistencies. In the metadata of our corpus we found the following inconsistencies:

• Deviations from a set standard. In dates, for example, ‘February 1st 2012’
could be ‘1 feb. 2012’, ‘01-02-2012’ or ‘2012-02-01’. Names can also have
many formats like ‘Jan van der Vaart’, ‘van der Vaart, Jan’ or ‘J. vd Vaart’.

• Differences in delimiters. Names can be separated by comma’s, ampersands,
or other characters.

• Addition of comments in divergent formats. A value can be uncertain, caus-
ing some annotators to add ‘?’, ‘[?]’, ‘UNKNOWN’, or putting the complete
value between square brackets.

• Capitalization / punctuation variations. Some tale titles end with a full stop
while others do not. This is also the case for other values such as tale type
and geographical location. Names and geographical locations that need to
start with a capital character are sometimes completely written in lowercase.

The paper focuses mainly on fixing these inconsistencies. Correction of actual
errors will be addressed in a later stage of the project.

3 Metadata standards and infrastructures

Most cultural heritage databases start out using similar terms such as date, names,
keywords, or geographical locations. Yet, it is common that during the database’s
life span, metadata terms are added and their values become more complex. To
prepare for cooperation with, and to prevent bad communication between, other
collections around the world [5], it is preferable to comply with standards where
possible.

 65

Standards for data and metadata are available in abundance. All these standards
have their own (dis)advantages and levels of complexity. For standardization of the
DFDB we choose to adopt Dublin Core2, because it is the most basic and widely
accepted standard. An additional plus is that the web-publishing platform of choice
for the DFDB, Omeka3, has Dublin Core as its primary standard. Dublin Core is
a classic set of 15 metadata terms which can be used to describe a large range of
media resources (web and physical). Dublin Core terms can be interpreted loosely
due to their general nature. Mappings of database fields to Dublin Core terms
might not always be intuitive due to differences in naming conventions. Before
assigning a name, the type of data must be properly analyzed. For the sake of
internationalization, the field names have to be defined in English. In case of the
DFDB however, terms are defined in Dutch, and can, when literally translated,
have a slightly different meaning. This can potentially cause confusion when used
in an international context.

All data of the Meertens Institute, including the DFDB, will eventually be made
available through the CLARIN initiative [6], which aims for a sustainable data
infrastructure to aid interoperability in the humanities, and more specifically, lin-
guistics. CLARIN uses a structured data format for metadata called Component
MetaData Structure (CMDI). Datasets have to be converted to this format before
they can be accessed through CLARIN. To avoid conversion problems, it is of
course best to have data that do not deviate from a strict standard. Conversion
tools are available for Dublin Core and other, more linguistically oriented meta-
data schemes such as OLAC4 and IMDI5. To ensure interoperability, CLARIN
makes use of ISOCAT, a framework for defining data categories that comply with
the ISO/IEC 11179 family of standards. Here metadata terms and their definitions
and restrictions can be registered, or existing terms can be adopted when deemed
suitable. The latter is always encouraged to limit the number of terms in ISOCAT.

4 Standardization

In this section we describe the main steps involved in standardization of a corpus.
First and foremost, it is important to collect the wishes of the users of the database
in question. Users rely on data that can be found and sorted based on all available
terms. The only way to facilitate this is to make sure that all new items conform to
a strict and properly documented standard before being submitted to the database.

4.1 Dutch Folk Tale Database metadata

The DFDB encompasses a rich set of metadata fields: a total of 29 terms supple-
ment the original text. Annotation and input of folktales in the DFDB was largely

2http://www.dublincore.org
3http://www.omeka.org
4http://language-archives.org
5http://www.mpi.nl/imdi/

 66

done by interns and employees of the Meertens Institute. Most metadata fields have
been entered in a free text format. Tables 1 and 2 show the terms of the DFDB,
including mappings to their future standards.

Dublin Core term DFDB term Explanation
4.1. Title title Title of the folktale
4.2. Subject folktale/ATU type Folktale type code
4.3. Description text summary Summary of the text
4.4. Type source format Original source type (e.g., book, oral)
4.5. Source text source Description of the source
4.6. Relation - Empty for future use
4.7. Coverage region Geographical information
4.8. Creator narrator The person who told the tale
4.9. Publisher - Not used
4.10. Contributor collector The person that recorded the tale
4.11. Rights copyrights Specifies if a text is copyrighted
4.12. Date date The date of narration or discovery
4.13. Format - Empty for future use
4.14. Identifier id number The internal identifier code
4.15. Language language The language or dialect of narration

Table 1: A folk tale object’s metadata terms mapped to Dublin Core terms

DFDB term (English) Explanation
literary Specifies if the text is literary
subgenre Genre of the tale (fairy tale, joke, etc.)
motifs Comma separated Thompson motif codes
keywords Comma separated list of keywords
named entities Named entities mentioned in the text
remarks Additional information about the text
corpus Corpus code
definition / description ATU information
kloeke georeference Kloeke georeference code of region
kloeke georeference in text Locations mentioned in the text
extreme Specifies if a text is extreme in nature

Table 2: List of original DFDB terms that need to be registered at ISOCAT

For a selection of fields, scripts were written to analyze, and to convert the
original free text values into well formatted values.

The date data type is one of the most diversely composed values in this database.
It ranges from perfectly composed ISO 8601 international standard (YYYY-MM-
DD), to Dutch standard (DD-MM-YYYY), to completely textual values like ‘Third
quarter seventeenth century’ and ‘stumbled upon on 12 February 2003’. Some val-
ues have question marks, square brackets, commas and points in them. Sporadi-

 67

cally the date has been supplemented with information about the era when the story
was being told, or when the story took place.

Statistics about observed variations in date formats are shown in Table 3. Be-
fore the dates were checked for inconsistencies, they were lower cased and spell-
corrected. Square brackets around the date number, month, year or whole date
value were removed, values like ‘sep.’, ‘sept’, ‘sept.’, and ‘september’ were changed
to ‘m09’, and day names were taken out as well. Some implausible values like
‘February 30th 1969’ were recognized by the scripts and manually corrected be-
fore the final conversion.

The region column is another value that can deviate a fair amount from any
defined standard although the vast majority has a ‘place (province)’ composition.
Multiple locations separated by several types of delimiters have been found. Spelling
mistakes, alternative or historical place names and additional commentary are no
exception.

Format Amount Percentage
DD [month] YYYY 25939 62.75%
YYYY 4909 11.88%
[part of] [century] 2345 5.67%
[month] YYYY 1170 2.83%
Easily recognized structures (above) 34363 83.13%
Other recognized structures * 5393 13.05%
Tales with no date value 1580 3.82%
Total tales 41336 100%

* Values containing enough information to compose structured date values

Table 3: Statistics about the different date formats that were found in the DFDB.

Format Amount Percentage
Place (Province) 32284 78.10 %
Place name only 1466 3.55 %
Province only 1205 2.92 %
Easily recognized structures (above) * 34955 84.56 %
Other recognized structures ** 952 2.30 %
Items without geographic information 5429 13.13 %
Total tales 41336 100 %

* Values containing enough information to retrieve additional geographic data
** Including all non-Dutch/Belgian locations and exotic formats

Table 4: Statistics about the different geographical formats that were found in the
DFDB.

An alternative way to specify a geographic reference in the DFDB is to assign
a Kloeke georeference. This is a geographical code for the place where the story

 68

was told. To facilitate his dialect research, in 1926 Gesinus G. Kloeke (1887-1963)
divided the map of the Low Countries into a grid and added codes to (most) places.
The system was long ago adopted by the Meertens institute as the geographical
standard. It will remain to be supported in the future because many books, papers
and publications make use of it.

The source format data type has always been filled using a selection list and
contains abbreviated values, nicely conforming to the standard. It holds a code
for the type of source from which the story originates. For instance, B stands for
‘boek’ (book) while M stands for ‘mondeling’ (oral), meaning that the story was
recorded from oral transmission.

In the fields for motifs, subgenre, and keywords we see similar problems as
for date and geographic location. Several types of delimiters have been used, and
various ways to indicate uncertainty about the assigned values. This can make
searching and separation of values problematic.

In the type field we found 24 values with typing errors that were easily trace-
able, but also 65 values that could not be found in any of the tale type indexes used
by the DFDB. No controlled vocabulary of keywords was defined for this collec-
tion. A keyword can be a number, name or a word in any time, state, or language.
After extraction of all keywords from the database, we ended up with a total of
562480 assigned keywords of which 41555 are unique. Of the assigned keywords,
993 had additional commentary, disclosing information about the context of the
keyword, while 50 contained question marks or square brackets to denote uncer-
tainty of meaning or relevance. Some (translated) examples are: ‘mirror [black]’,
‘[cannibalism]’, ‘piggy (?)’, and ‘punishment?’.

For the fields containing person names, such as collector or narrator, input
conventions have been appointed but these have not always been respected. Most
frequently the name is written as ‘surname, first name’ but often deviations like the
reverse, comma-less, title plus name, or just first name have been used. In more
recent items, obtained from the Internet, forum user names have been entered.
Since it is not always clear which name is the first name, this is a hard problem to
tackle fully automatically.

4.2 Standardization of DFDB metadata

It is possible to determine an order of importance in the standardization of the
values in a cultural heritage database based on the search and browse behavior of
users. The values that are most often used for search, sorting and visualization in
the DFDB are all fields, title, keywords, dates and geographical location. Here we
discuss the standardization of dates and geographical locations in detail, and treat
the rest as standardization problems of a similar nature. With this standardization
step we take into account the properties and limitations of the chosen metadata
standard, Dublin Core.

 69

Dates As explained above, the date values in the DFDB have always been entered
in free text. They can range from a perfectly formatted date value to a complete
sentence with comments. To improve functional searching, sorting and conversion,
we need to be able to capture all this information in a simple computer readable
format. Most free text date values represent either a single date or a time span.
Therefore we chose to adopt a data container with a range of two dates defined as
‘from’, and ‘up to and including’, both conforming to the ISO 8601 standard. This
standard defines a date as YYYY-MM-DD. If an item’s date is a single date, both
these dates will be the same. For existing free text values, we propose a strictly
defined interpretation, determined in consultation with the humanities researchers
maintaining the DFDB. This interpretation is shown in Table 5. Strict values have
been determined to represent ‘end of’, and ‘beginning of’ indicators. The observed
‘before’, and ‘middle’ or ‘halfway’ values have also been quantified.

Description) Definition
midway point century YY51-01-01
midway point year YYYY-06-01
midway point month X YYYY-[X-(MAX_MM_DATE/2)]
beginning of / end of century first/last 20 years
beginning of / end of year first/last 2 months
beginning of / end of month first/last 7 days
mid/halfway century 10 year window around midway point century
mid/halfway year 1 month window around midway point year
mid/halfway month 3 day window around midway point month

Table 5: Quantified definitions of free text dates. MAX_MM_DATE stands for the
last day of the month in question

In the future, users will be allowed to enter a date in free text format that is
supported by the definitions above. This will then be automatically translated as
shown in Table 6. All structured date ranges will be placed in the Dublin Core
date field after processing and approval of the annotator. Additional comments
concerning a date will have to be specified in the item’s comments field. The date
range from the item will in turn be used to generate human readable dates like
‘14th century’, or ‘winter 2012’ for viewing. A somewhat similar approach to
accommodating users’ preference for ‘common language’ over strict date formats
is that of Petras et al. [7], who map named time periods (e.g., the Renaissance or
the Cold War) to date ranges.

Geographical locations For the ‘region’ field of the narration of a folk tale, the
original, and most frequently occurring format is ‘place_name (province)’. The
value is based on the name of the location at the time of narration. At present, it
is hard to search the DFDB for tales that were recorded in a particular county or

 70

Description Translation
Precise date (example) 1550-01-01 - 1550-01-01
Cth Century [(100(C-1))+1]-01-01 - [100C]-12-31 (official)
Only YYYY available YYYY-01-01 - YYYY-12-31
Only YYYY-MM available YYYY-MM-01 -

YYYY-MM-[MAX_MM_DATE]
Xth quarter of year YYYY YYYY-[3X-2]-01 -

YYYY-[3X]-[MAX_MM_DATE]
Xth quarter of Cth century [(100(C-1))+1+(25X-25)]-01-01 -

[(100C)+(25X)]-12-31
Beginning of Cth century [(100(C-1)+1)]-01-01 - [(100(C-1)+20)]-12-31
Beginning of year YYYY YYYY-01-01 - YYYY-02-31
Beginning of month MM YYYY-MM-01 - YYYY-MM-07
End of Cth century [(100(C-1)+81)]-01-01 - [(100(C))]-12-31
End of year YYYY YYYY-11-01 - YYYY-12-31
End of month MM YYYY-MM-[MAX_MM_DATE-7] -

YYYY-MM-[MAX_MM_DATE]
[season] year [Begin date season] - [end date season]

(Outer possible dates of that season)

Table 6: Strictly defined interpretations of free text date values

region. When taking future international cooperation into account, it is preferable
to supply higher order information such as country and continent name. A suit-
able hierarchical order for locations would be: Geographical coordinate (latitude,
longitude), spot (building name/artwork/tree/dune), street (with optional number),
place (village/city/lake), county, region (area/nature reserve/mountain), province,
country, and continent (and perhaps even planetary body for future entries). Some
examples:

• Full set: (53.360304, 5.214203), Brandaris, Torenstraat, West-Terschelling,
Terschelling, - , Friesland, the Netherlands, Europe, Earth

• Partial set: (52.37403, 4.88969), - , - , Amsterdam, Amsterdam, - , Noord-
Holland , the Netherlands, Europe, Earth

• Partial set: (51.74308, 4.77339), - , - , - , - , Biesbosch, Noord-Brabant, the
Netherlands, Europe, Earth

An open source geographical database that can supply such information is
Geonames.6 This database contains roughly 8 million geographical entries world-
wide, and their corresponding coordinates, in a hierarchical manner. The items
already present in the DFDB will be supplemented with all available information
that can be retrieved from Geonames. For future input however, Google Places7

6http://www.geonames.org/
7https://developers.google.com/places/

 71

will be used for retrieval of coordinates and hierarchical geographic information.
We will do this using a simple geolocation plugin for the Omeka content manage-
ment system which has been extended to fit the information needs of the DFDB.

To facilitate historical annotation of a folktale, we either need to create the
freedom for an annotator to supply historically sound information, or to consult a
very complete spatial history database. The latter option is being investigated by
several groups around the world [8, 9], yet no completely open source solutions are
available at the moment. When these become available, it is still possible to adopt
them. We leave room in our system for manual alterations in the data provided by
Google, so that names of old towns and counties can be supplied.

We will continue to support the Kloeke georeference codes. This way, we
assure a link with the other collections of the institute and are still able to use the
old visualization methods used by some researchers. It will however no longer be
necessary to look up this code manually, adding to the reduction of input steps for
a new item. The Kloeke georeference data will not be stored in a standard Dublin
Core field since it is useless for researchers outside the Meertens institute.

Tale types, motifs and keywords Since these values have always been typed,
or copy pasted into place, some input errors have been made. However, only little
inconsistency was observed in these values. Datasets are available for the tale types
and motifs that were cross referenced for correctness. This yielded lists that were
of manageable size for manual curation.

The generated list of unique keywords will be used to give suggestions by
means of auto-completion when an annotator attempts to add them. This will pre-
vent further addition of variants. In a sense, this is an ideal compromise between a
controlled vocabulary and complete freedom.

4.3 Meta-metadata standardization

If an annotator is uncertain about a metadata value, it should be somehow stored in
the data set. In case of automatic annotation it is desirable to assign a confidence
level to the annotation. An annotator can consequently approve or reject the out-
come. This type of information can be considered meta-metadata. It is currently
specified for the following DFDB fields: Tale type, Narrator, Kloeke georeference
(location of narration), Kloeke georeference (locations in the tale).

Meta-metadata could be stored in the following ways:

• A special character or note in the data itself, e.g. #D:[confidence level]

• An additional term or column in the database, e.g. location_disputed (yes/no)

• An additional dataset containing the value’s id and status, e.g. value_id,
status, status_score, date_created

A special character in the data itself might confuse the user of the data, and
can be seen as data pollution. An additional term in the database is a good solution

 72

for a “quick fix". The disadvantage is that for every metadata descriptive term a
column has to be added to the database. The last option from the list is the most
permanent and modifiable solution. An additional system can monitor the state
of each value of each item of the database. An additional table can be created
containing the item’s value’s id, a meta-metadata type, a score and a date. Now, an
item can be flagged as disputed, or as being computer generated with a confidence
interval of 0.43, or approved by a user. Table 7 shows some examples of these
values.

item_value_id meta-metadata-type confidence date_created
(item 1, tale type) disputed - 01-01-2001
(item 25, language) generated 0.43 10-01-2010
(item 25, language) approved - 11-01-2010

Table 7: A few examples of rows in a meta-metadata table

4.4 Challenges

The DFDB, like many other online cultural heritage collections, is not static but is
constantly being supplied with new items. Because annotators and users rely on
a working system, everything should stay that way. The standardization process
has to be carefully planned and prepared; trial and error will confuse the users and
cause even more errors and inconsistencies. The process is best carried out in big
steps. It can be compared to repairing a moving bicycle.

5 Conclusion

At first glance, the standardization of a cultural heritage database seems like a
straightforward job which could be done through some simple filter actions, value
separations, and regular expressions. However, the contrary is true. Many factors
have to be taken into account before the actual data can be touched and changed.
The data need to be studied in detail to get an overview of all the possible types
of values. Standardization of data brings along a large set of problems. We have
shown that manual annotation of cultural heritage databases can spawn several
types of errors and inconsistencies. We have discussed the choice of metadata stan-
dards and infrastructures and how to connect with them. Existing data standards
and conventions will have to be respected, or developed when none are present.
The longer conventions are not followed, the larger the divergence in values be-
comes, and the harder the clean up operation will become. On top of this, the ad-
dition of items to the database by annotators is a continuous process which makes
a faceted standardization of the database and its functions a difficult task. We hope
that this paper can be a helpful asset for future endeavors of a similar kind.

 73

6 Acknowledgments

This work has been carried out within the Folktales as Classifiable Texts (FACT)
project, part of the Continuous Access To Cultural Heritage (CATCH) program
funded by the Netherlands Organization for Scientific Research (NWO).

References

[1] James Abello, Peter Broadwell and Timothy R. Tangherlini. Computational
Folkloristics, Communications of the ACM 55(7): 60–70, 2012.

[2] Dong Nguyen, Dolf Trieschnigg, Theo Meder, and Mariët Theune. Auto-
matic Classification of Folk Narrative Genres, Proceedings of the Workshop
on Language Technology for Historical Text(s) (KONVENS 2012), pp. 378–
382, 2012.

[3] Dolf Trieschnigg, Djoerd Hiemstra, Mariët Theune, Francisca de Jong, and
Theo Meder. An Exploration of Language Identification Techniques for the
Dutch Folktale Database, Proceedings of the Workshop on Adaptation of Lan-
guage Resources and Tools for Processing Cultural Heritage (LREC 2012),
pp. 47–51, 2012.

[4] Antal van den Bosch, Marieke van Erp, and Caroline Sporleder. Making a
Clean Sweep of Cultural Heritage, IEEE Intelligent Systems 24(2):54–63,
2009.

[5] Theo Meder. From a Dutch Folktale Database towards an International Folk-
tale Database, Fabula 51(1-2): 6–22, 2010.

[6] Tamás Váradi, Steven Krauwer, Peter Wittenburg, Martin Wynne and Kimmo
Koskenniemi. CLARIN: Common Language Resources and Technology In-
frastructure, Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08), 2008.

[7] Vivien Petras, Ray R. Larson, Michael Buckland. Time Period Directories:
a Metadata Infrastructure for Placing Events in Temporal and Geographic
Context, Proceedings of the 6th ACM/IEEE-CS joint conference on Digital
libraries, pp. 151–160, 2006.

[8] Richard White. What is Spatial History? Spatial History Lab: Working paper
[online] http://www.stanford.edu/group/spatialhistory/cgi-bin/
site/pub.php?id=29 [Last accessed 2012-09-17]

[9] Kilian Schultes and Stefan Geißler. Orbis Latinus Online (OLO), Digital
Humanities 2012, July 2012. http://www.dh2012.uni-hamburg.de/
conference/programme/abstracts/orbis-latinus-online-olo/
[Last accessed 2012-09-16]

 74

Studies for Segmentation of Historical Texts:
Sentences or Chunks?

Florian Petran

Department of Linguistics
Ruhr-Universität Bochum

E-mail: petran@linguistics.rub.de

Abstract

We present some experiments on text segmentation for German texts aimed
at developing a method of segmenting historical texts. Since such texts have
no (consistent) punctuation, we use a machine learning approach to label to-
kens with their relative positions in text segments using Conditional Random
Fields. We compare the performance of this approach on the task of seg-
menting of text into sentences, clauses, and chunks, and find that the task
gets easier, the smaller grained the target segments are.

1 Introduction1

Text segmentation is an important part of the natural language processing pipeline.
Not only is it an important target for corpus annotation, since the sentence and
constructions on the sentence level are subject to research, it is also an important
pre-processing step for a lot of other annotations that presuppose a segmented text.
Tasks such as bitext alignment or part-of-speech tagging either require a segmented
text, or work better or faster with pre-segmentation.

Segmenting text into sentences is usually seen as a task of disambiguating
punctuation marks, and there are several systems that perform that task well. But
what if a text has no or no consistent punctuation to indicate sentence boundary?
Syntactically motivated punctuation was not used until well in Early Modern times
for European languages, or even as late as the 19th century for Chinese texts. Any-
one working with historical texts will therefore be faced with the problem of having
to manually annotate for sentence segmentation which is a non-trivial, time con-
suming task. Spoken language faces similar problems as well, but it has intonation
features as indicators of sentence breaks, something which is largely absent in his-
torical texts.

1The research reported here was financed by Deutsche Forschungsgesellschaft (DFG), Grant DI
1558/4-1.

 75

There is already some related work on Chinese sentence segmentation, and
spoken language segmentation (see section 2 below). Based on those results, this
paper introduces experiments with segmentation of modern German language data
using Conditional Random Fields (Lafferty et al. [5]) without the use of punctua-
tion marks. They are aimed at developing a method of segmenting historical texts.
In the results, we find that a chunking approach works far better than the sentence
segmentation, which suggests that it would be prudent to do the sentence segmen-
tation based on the chunks determined.

The paper is organized as follows. Section 2 introduces approaches this work
is based on. The data used for the experiments, and the method used to obtain it
is described in section 3. Section 4 describes the experiments, their results, and
the method of evaluation. Finally, section 5 offers some concluding thoughts and
directions for future research.

2 Related Work

Most sentence segmentation systems for Western languages rely on the presence of
periods in the text. These need to be disambiguated between sentence terminating
punctuation symbols, and punctuation in other functions such as abbreviations. In
that, systems such as Gillick [2] achieve very good results with F-scores well over
90%. However, the solutions are not transferrable to a situation where punctuation
is inconsistent, or entirely absent.

One such situation is spoken language data, where capitalization or punctuation
do not exist at all. For such cases, a machine learning approach is used to classify
tokens according to whether they constitute a sentence boundary or not (such as in
Stevenson and Gaizauskas [10]). More recent approaches achieve good results with
Hidden Markov Models or Conditional Random Fields (Liu et al. [6],[7]), but they
use prosodic information such as timing, energy, or pitch as additional features.
With the NIST SU detection data set, there is an established gold standard data set
that is used by many researchers. No such data set exists for historical or modern
German.

One of the key features of speech data is that it is not always straightforward to
segment into sentences, since a sentence in spoken language is not as well defined
as in written language: due to their spontaneous nature, spoken sentences may be
interrupted, or syntactically incomplete. Furthermore, even in written language
it is often subjective if a comma or a period should be used at a given point in
the text. For research on spoken language data, this is approached with the def-
inition of sentential units that are annotated in the transcribed data instead. An
inter-annotator agreement of 93% for the NIST SU detection task (Liu et al. [6])
shows that even the manual annotation is not a trivial task. Spoken language data
bears some similarity to historical texts in that the transcription is another poten-
tial source of error, whereas historical language has the normalization of spelling
variants as error source. However, the key difference is that prosodic information,

 76

used by all newer approaches to speech segmentation, is not available for historical
texts.

Another important difference is that spoken language research focuses mostly
on English, which has a relatively fixed word order. The results are thus not en-
tirely transferrable to a language with more free word order, such as German. Nev-
ertheless, an important result from Liu et al. [7] that influenced the experiments
presented here is the improved performance of a CRF based system compared to
HMM or MaxEnt based ones.

In Chinese, punctuation was not commonly used until well in the 19th century,
and is often not used today in informal (Internet) communication (Huang et al. [3]).
Huang et al. [4] employ a setup very similar to the one used in this paper, where
CRF are used to label different data sources, and test different tagsets for sentence
breaks. In addition to POS tags they use phonetic representation of the words
indicating (among other things) the initial and final tone. It is worth noting that
even though they achieve F-scores of up to 83% on historical texts, modern Chinese
texts tend to have more complex sentences, and are therefore harder to segment and
they achieve far lower results on them. Obviously, the segmentation task is easier,
the simpler the units are.

3 Data Basis and Extraction Methods

So far, there are no complete historical treebanks of German that have suitable
annotation for all tasks. Instead, the data used for the experiments is extracted
from the Tübinger Baumbank des Deutschen/Zeitungstext (TübaDZ)2, a treebank
of about 65,000 sentences of German newspaper texts. Modern German uses cap-
italization to indicate nouns, but this is usually not the case for Early Modern Ger-
man. Additionally, an important property related to the task is the absence of (con-
sistent) punctuation. We therefore filtered the punctuation marks from the texts
and downcased all tokens, so as to simulate a historical text as closely as possi-
ble. Another important property of historical texts is frequent occurence of variant
spelling, which was not simulated. Instead, we assume a work environment where
all historical tokens are already mapped to their modern equivalent spellings.

3.1 Data Source and Sentence Segmentation Task

For the annotation of boundaries, we used the 5-tags set that performed best for the
Chinese segmentation task (Huang et al. [4]), described in Table 1.

As far as data extraction is concerned, the simplest possibility is to annotate the
boundaries of a sentence (S node) in the data. For this annotation we need not take
the parse tree into account and use no additional heuristics.

2http://www.sfs.uni-tuebingen.de/tuebadz.shtml

 77

Tag Meaning
L1 Beginning of segment
L2 Second token in segment
M Middle of segment
R End of segment
S Singleton segment

Table 1: 5-tags set for sentence segmentation.

S

SIMPX
SIMPX SIMPX

Die gesamte Wohnung brannte aus benachbarte Wohnungen wurden erheblich beschädigt

The entire apartment burned out neighboring apartments were considerably damaged

Figure 1: “The entire apartment burned out, neighboring apartments were severely
damaged.” — An example for embedded SIMPX with a straightforward solution.

3.2 Clause Extraction Task

Due to the recursive nature of clauses, their extraction from TübaDZ is not as
straightforward. The TübaDZ parse tree is annotated with categories for sim-
ple clauses, relative clauses, and paratactic constructions of simple clauses, all of
which are collectively referred to as SIMPX from here on. The extraction of these
requires some heuristics, which are further described on some simplified example
parse trees. First, a SIMPX node can itself contain other SIMPX nodes as the sim-
plified parse tree in Fig. 1 shows. For these cases, we decide to always use the
lowest SIMPX nodes, i.e. those further away from the root of the tree, and discard
the higher level clause for segment annotation purposes.

Since German has a relatively free word order, this heuristics is not in all cases
sufficient, as the example of a partial sentence in Fig. 2 shows. The simple clause
begins at the first token verantwortlich, and then continues from sei until the end
of the example. Beginning at the second token so up to AWO, however, is a paren-

S

NP SIMPX

Verantwortlich so das Schreiben einer Mitarbeiterin der AWO sei die Landesvorsitzende Ute Wedemeier
Responsible according to the letter of an employee of the AWO was the state chairwoman Ute Wedemeier

Figure 2: “According to the letter of an employee of the AWO, state chairwoman
Ute Wedemeier was responsible.”—An example of an embedded structure that is
not a simple clause by itself.

 78

SIMPX
SIMPX

doch gesichert scheint daß Frauen aus anderen Gründen zur Flasche greifen als Männer

but sure seems that women for different reasons to the bottle reach than men

Figure 3: “but it seems safe to say that women take to the bottle for different
reasons than men.” — A SIMPX node that contains another SIMPX, but also
terminals.

thetical NP that is independent of the simple clause, and therefore directly attached
to the root sentence node S. In this case, the heuristics of taking the smallest node
obviously does not suffice, since both nodes are siblings. So we have elements of
the sentence that are not part of any clause from a syntactic point of view.

For these cases we would extract the NP in the example as a clause on its
own. The way this was implemented was to gather all terminal symbols that were
not extracted as part of a clause, and regard them as a segment as long as they
were consecutive. Furthermore, the flat boundary annotation scheme is unable to
account for non-consecutive tokens in a segmental unit. Since we cannot reorder
the data, we extract the SIMPX in cases like these as two different segments, one
starting at sei up to the end, and one with verantwortlich as its only word.

Fig. 3 shows another (partial) example sentence from the corpus. If we apply
the rule to always use the smallest SIMPX in this case, we would be left with unas-
signed terminal symbols in the result, since the SIMPX starting at daß running up
to the end is embedded into the superordinate SIMPX, but there are also terminal
symbols. In order to not overcomplicate the heuristics, we applied the rules set
above straightforwardly in this case as well. This means that we extract all ter-
minals preceding the smaller SIMPX as a clause on their own, and the following
SIMPX as an independent clause. Overall, this means that the clause annotations
are less than perfect, since the nature of a parsed corpus makes it ill suited for a
shallow segmentation task.

3.3 Chunk Segmentation Task

Finally, we extracted chunks to compare the chunk segmentation task with the
sentence segmentation. Unfortunately, again, the TübaDZ annotation is not always
well suited for a chunking task. Although there are node labels for verb phrases,
these are in fact used to annotate the verbal head of the phrase instead of the phrase
governed by the verb. We therefore excluded verb phrases from the extraction and
added another tag O to the tagset, indicating that a token is outside of an annotated
chunk. The chunks were extracted in a similar way to the SIMPX nodes, preferring
bottom most nodes for the extraction, with the following additions to the heuristics.

 79

If a prepositional phrase was present, it was preferred over a noun phrase, and if
a noun phrase was present, it was preferred over an adjective phrase. The only
other phrases that are annotated in TübaDZ are complex determiners and certain
adverbial phrases, but since these are always embedded in a predictable way, we
ignored them for the data extraction.

3.4 Data Properties

Table 2 shows the tag distributions for each task. Obviously, the number of L1
and R tags is always the same because a segment starting with an L1 tag has to be
always closed by an R tag. The difference between the amount of tokens tagged
L1 and L2 indicates the amount of segments that are longer than two tokens: a
two token segment only has L1 and R tags, and only segments with three or more
tokens have the L2 tag. The difference between the amount of L2 and M tagged
tokens indicate the amount of segments that are longer than three tokens, because
only those would have the M tag, but also how likely it is that these segments are
exactly four tokens, or longer.

L1 L2 M R S O
Sentence 6.4954% 6.2716% 80.5324% 6.4954% 0.2052% –
Clause 14.1560% 12.5402% 57.3251% 14.1560% 1.8226% –
Chunk 19.1940% 11.1127% 18.8499% 19.1940% 9.1268% 22.5482%

Table 2: Relative frequencies of the boundary tags in % of 832,975 tokens. Most
frequent tags for each task are bold face. The leftmost column indicates the task.

For the sentence segmentation task, the number of L1 and L2 tags is roughly
the same, which indicates that there are only few two token segments—incidentally
about the same number as one token segments (tagged S). The vast majority of
tokens is tagged M, which indicates that most segments are well over four tokens
long. For the clause segmentation task, the number of two token segments is,
again, roughly the same as the number of one token segments, but there are a lot
more of both categories. Compared to the sentence task, there is a lower proportion
of M tags, again unsurprisingly, as the segments are relatively shorter, since they
are subsegments of sentences. The chunk segmentation task has a much more
even distribution of tags, with a small majority of tokens tagged O (for outside of
chunk). The relative numbers of L1 and L2 tags indicate that a little less than half
the segments are only two tokens long. But for those that are at least three tokens
long, there is a high probability that they are either four tokens or longer.

4 Results and Evaluation

4.1 Evaluation Method

All the following results were obtained using 5-fold cross validation, averaging the
results over all folds. The corpus was split along the sentence boundaries closest

 80

to one fifth of the tokens, such as to minimize noise in the data. Training and ap-
plication of the model was done using the CRF++ toolkit3 with the default feature
template, token and POS tag as feature, a minimum feature frequency of 2 and the
default cost function of 1.0. All test and training data was converted to lower case.

In addition to testing with the gold standard POS data, we also annotated the
test data with the TreeTagger (Schmid [9]) which ships with a parameter file for
German. This was done to more closely simulate real world conditions, where text
segmentation is hardly done on texts with manually corrected POS tags. Since the
parameter file for the tagger expects mixed case input, we used the original, mixed
case tokens for tagging and downcased them afterwards. However, explorative
experiments suggest that tagging performance loss by retraining a German tagger
on downcased data is negligible.

With a set of less than six tags, tagging accuracy has a fairly high baseline for
the most frequent tag assumption. Evaluating tag accuracy as a percentage of cor-
rect tags is therefore not a very meaningful indicator of the overall performance of
the system. Instead, we evaluated precision and recall for the segment boundaries
in the text. This was determined as follows. If a token was tagged as the start
of a segment, and if the immediately preceding token was tagged as the end of a
segment, a boundary was assumed to be present between the tokens. Note that this
means that the evaluation for the sentence tagset is theoretically slightly stricter
than for the IOB tagset, since it relies on two tags being correct rather than just
one. In practice, this does not matter so much, since the system reliably learned the
correct sequence of boundary tags in all cases. A baseline for this evaluation ap-
proach is difficult to determine, and any random guessing baseline would be fairly
low. For the purpose of this paper, however, it does not matter as much, since our
focus is on the comparison of relative difficulties of the different tasks.

Where applicable, O–tagged tokens were counted in the same way as singleton
phrases. Of course this means that a theoretical baseline is different for all tasks
below (see section 3.4). The smaller the units that are tagged, the less M tagged
tokens and the more S and O tagged ones appear. But none of the correct M
tags count towards the performance reported below, since they are always negative
categorizations.

4.2 Sentence Segmentation Task

The results for the sentence segmentation task are shown in Table 3. They are better
than could be expected by random guessing, but certainly not good enough for real
world application in this form. It seems that this task is especially sensitive to
only slightly erroneous POS tags, so we performed an additional experiment with
a simpler template using only the surface token as feature. If we compare those
results to the results with generated tags, we notice, again, a marked decrease in
overall performance, but not as much as from the gold POS tags to the generated

3http://crfpp.googlecode.com/

 81

tags. In fact, the precision is even slightly higher without the tags.

Precision Recall F-score
Gold POS Tags 71.57% 59.13% 64.76%
Generated POS 63.27% 48.72% 55.04%
Without POS 63.75% 40.15% 49.27%

Table 3: Results for the sentence extraction task.

The likely reason for the poor performance of this task is that sentence bound-
aries are, to some degree, subjective. It is often a matter of style if a writer uses a
full stop, a comma, or a semicolon at a given point. This has a detrimental effect
mainly on recall, as it is difficult to find all cases that had full stops in the original
text, but it also effects the overall performance negatively, because many items in
the training data are learned as in the middle of a sentence when they might as
well have been the first token in a sentence. The comparatively higher precision
suggests that a bootstrapping approach could possibly improve performance. The
small effect of the generated POS tagging indicates that this might work even for
a text where tagging proves difficult and could, in fact, be potentially used to im-
prove tagging performance. But before such enhancements are considered, a more
detailed error analysis would have to be done.

4.3 Clause Segmentation Task

For the simple clause boundary annotation task shown in Table 4, the performance
is much better. This is especially remarkable given the tradeoffs from our clause
extraction heuristics described in Sec. 3. Obviously, simple clause boundaries are
easier to learn than sentence boundaries, even with noisy data. The noise also
seems to affect recall slightly more than precision. In a real world application,
such a task might benefit from annotation of sentential units instead of clauses or
sentences, such as described in LDC [1].

Precision Recall F-score
Gold POS Tags 83.00% 69.37% 75.57%
Generated POS 73.60% 58.67% 65.29%
Without POS 71.07% 54.44% 61.65%
Simplified data 88.25% 79.46% 83.72%

Table 4: Results for the clause extraction task.

The last line of Table 4 shows the results with gold tags for an idealized setting
were only continuous SIMPX consisting of nothing but terminals were extracted.
Note that this is not entirely comparable to the other rows, since the source data
was adjusted, but it shows how performance might improve for an ideal language
that did not force difficult decisions such as the ones described in Sec. 3 upon us.
The effect this has on recall is roughly twice as high as the effect on precision. This

 82

shows that even for the noisy data, the system learned the right clues reliably, but
was less able to apply them in all cases.

4.4 Chunk Segmentation Task

For the chunking task, we did an additional run of the experiments with the IOB
tagset commonly used for chunking (Ramshaw and Marcus [8]). The IOB tagset
only knows annotations for a position in- or outside of a chunk (I and O respec-
tively), or starting a new chunk (B). The experiments done by Huang et al. [4]
suggest that the 5-tags set performs best, but they do not evaluate its performance
on chunking, or the IOB tagset.

As Table 5 shows, the chunking task yields very good results for both tagsets.
The 5-tags set task outperforms the IOB tagset by a small margin. As the quality
of the POS annotation decreases, however, the gap between the two annotation
schemes shrinks slightly. It is also noteworthy, that the chunking task is far less
sensitive to the quality, or in fact the presence of POS annotation than the other
tasks, for both annotation schemes, and even slightly less so for the sentence tagset.

5 tagset IOB tagset
Precision Recall F-score Precision Recall F-score

Gold POS Tags 92.72% 94.90% 93.79% 91.82% 94.77% 93.27%
Generated POS 91.19% 90.78% 90.98% 90.37% 92.70% 91.52%
Without POS 90.79% 88.87% 89.82% 88.36% 89.07% 88.71%

Table 5: Results for the chunking task using the extended 5-tags set and the IOB
tagset, and gold or generated POS data respectively.

Of the three tasks examined here, the chunking task is the only one where recall
is higher than precision, if only by a small margin, but recall is also more affected
by the POS annotation quality than precision. In any case, and for both annotation
schemes, the chunking task yields good results even with non-optimized, standard
settings for the learning program.

4.5 Error Analysis

Tables 6, 7, and 8 show the confusion matrices for the sentence, clause, and chunk
segmentation tasks respectively. All matrices were generated for the results with
gold POS tags. They show that all tasks perform far better a random guessing sce-
nario, and for almost all tags and tasks, the correct guess is the vast majority. For
the sentence and chunk segmentation tasks, all tags have a relatively high proba-
bility of confusion with the M tag, which is to be expected since it is by far the
most frequent in those tasks. The low probability of confusion of the L1, L2, and
R tags with each other show that where the system guessed the boundary wrong,
it was not off by just one or two positions, but generally did not recognize that a
boundary was present at all, tagging M instead. So far, this is exactly what should
be expected.

 83

Expected
L1 L2 M R S

A
ct

ua
l

L1 31514 (58.78%) 535 (1.04%) 11972 (1.01%) 349 (0.65%) 378 (22.13%)
L2 646 (1.20%) 30114 (58.60%) 11816 (1.79%) 867 (1.63%) 44 (2.58%)
M 20872 (38.93%) 20058 (39.03%) 624645 (94.62%) 20420 (38.29%) 497 (29.10%)
R 389 (0.73%) 674 (1.31%) 11650 (1.76%) 31630 (59.32%) 204 (11.94%)
S 195 (0.36%) 9 (0.02%) 55 (0.01%) 58 (0.11%) 585 (34.25%)

Table 6: Confusion matrix for the sentence segmentation task. Cells indicate the
number of guesses for the category denoted by the row, the percentage is of the
row total. Correct results are bold faced.

Expected
L1 L2 M R S

A
ct

ua
l

L1 82300 (70.36%) 2772 (2.69%) 12283 (2.62%) 1908 (1.64%) 2991 (20.05%)
L2 4052 (3.46%) 73995 (71.82%) 118818 (2.52%) 3637 (3.12%) 461 (3.09%)
M 27232 (23.28%) 23907 (23.21%) 431551 (92.07%) 27447 (23.56%) 3919 (26.27%)
R 1768 (1.51%) 2217 (2.15%) 12256 (2.61%) 82614 (70.90%) 3036 (20.35%)
S 1626 (1.39%) 134 (0.13%) 825 (0.18%) 915 (0.79%) 4510 (30.23%)

Table 7: Confusion matrix for the clause segmentation task.

Concerning the singleton segment S tag for the sentence task, if we disregard
the confusion with M, the system fairly frequently confused it with L1. This in-
dicates that it often correctly identified a sentence starting at that position, but
incorrectly guessed the length of that sentence. Overall, the S tag has the low-
est accuracy in that task, probably because it is very rare in the training corpus.
The difference is even smaller for the clause segmentation task, where the correct
guesses for S only barely outweigh the L1 guesses. This is in spite of the fact that
the S tag for clauses is far more frequent than for sentences, though still compara-
tively rare. The likely source of that problem are the problems with data extraction
for clauses described in Sec. 3.2. Since a lot of S tagged tokens are not actually
singleton segments, but instead part of discontinuous clauses, it was difficult to
learn them reliably. This is confirmed by the far better results for this task on the
idealized data as described in the bottom row of Table 4.

Expected
L1 L2 M R S O

A
ct

ua
l

L1 112679 (88.92%) 1775 (2.48%) 10166 (8.32%) 227 (0.18%) 1190 (2.00%) 1233 (0.82%)
L2 1359 (1.07%) 60486 (84.35%) 6676 (5.46%) 2576 (2.05%) 161 (0.27%) 328 (0.22%)
M 8544 (6.74%) 5579 (7.78%) 88104 (72.11%) 7966 (6.32%) 1401 (2.35%) 2143 (1.43%)
R 200 (0.16%) 2906 (4.05%) 10506 (8.60% 109891 (87.25%) 2145 (3.60%) 944 (0.63%)
S 1343 (1.06%) 223 (0.31%) 2281 (1.87%) 2161 (1.72%) 53946 (90.66%) 67 (0.04%)
O 2600 (2.05%) 742 (1.03%) 4440 (3.63%) 3131 (2.49%) 663 (1.11%) 145220 (96.86%)

Table 8: Confusion matrix for the chunk segmentation task.

The confusion matrix for the chunk segmentation task shows the lowest accu-
racy for the M tag, which is mildly surprising since it is not all that infrequent in
the data. On the other hand, the tag frequencies are much more balanced overall
for this task, so any effect of tag frequency would be smaller overall. One factor
that is not accounted for at all by the results reported in Sec. 4.4 is the remarkably
small confusion between O and S. Any such confusion would not be counted as
word boundary error by our evaluation scheme described in Sec. 4.1, since they
both serve the same function with regards to the word boundary. This indicates
that a possible labeling of chunks with or after the segmentation could work well.

 84

5 Conclusion

We have shown that it is generally possible to segment German text without the
use of punctuation marks. As the target units for segmentation become smaller,
this task becomes easier, to a point where it achieves results that would be suitable
as basis for manual correction in a real world application. Further improvements
might be achieved by optimizing the parameters for the CRF system. The reason
for this performance increase is likely that sentences are, to a degree, subjective,
and their segmentation dependent on individual style in many cases. Clause units
have fairly complex relations with each other and are therefore not easily captured
by a flat boundary annotation scheme.

Chunks on the other hand, as defined by the data extraction in Sec. 3, are simple
constituents of sentences that are easily objectively identifiable. This suggests that
instead of annotating sentences, it would be more efficient to first chunk the texts,
and then use those chunk boundaries to identify sentential unit breaks. Since the
chunks can never cross sentence boundaries, the sentence segmentation based on
the chunk boundaries would be reduced to the disambiguation of chunk boundaries,
similar to the way that written text is normally segmented. This is a far easier task
than segmentation of text without any indications of boundaries since it limits the
possibilities of where boundaries can be located.

One direction that needs to be explored for future research is the performance
of the system on an actual historical text. As mentioned above, these types of text
have large amounts of variant spellings that need to be normalized for a model
trained on modern German to be applicable. Such a normalization step would
introduce an additional source of error to both POS tagging and the segmentation,
so it needs to be clarified how large the impact of an additional error source on
the overall system will be. Alternatively, the segmentation model could be trained
on non-normalized historical data. For this case, the effect on training corpus size
would need to be explored.

As an intermediate step, it would also be helpful to determine the performance
on a corpus that has annotations for verb chunks as well. We had to leave these
out of the experiments entirely because the TübaDZ annotations do not allow an
extraction of verb chunks. Had VP annotation been present, we would have less
out of chunk elements, less word boundaries, and likely longer segments overall.

Furthermore, there are various improvements that could be made on the per-
formance of the system itself. For example, Liu et al. [7] report that a majority
vote between MaxEnt, HMM, and CRF classifiers performed better than each in-
dividual one for the task of spoken language segmentation. Such a majority vote
system would be computationally expensive, but not very hard to implement. An-
other possibility is a bootstrapping approach, suggested by the fact that for most
tasks, precision is far higher than recall.

Finally, another open question is the labeling of chunks, which would, ulti-
mately, be a desirable outcome of the chunk segmentation. There are basically two
different approaches to the shallow parsing task with regards to our segmentation

 85

system. We could label the chunks after they have been segmented, or combine
the chunk labeling with the segmentation for a larger tagset. Each approach could
have its advantages, but discussing them is beyond the scope of this paper.

References

[1] Linguistic Data Consortium. Simple metadata annotation specification ver-
sion 6.2. 2004.

[2] Dan Gillick. Sentence boundary detection and the problem with the US.
In Proceedings of NAACL, pages 241–244. Association for Computational
Linguistics, 2009.

[3] Hen-Hsen Huang and Hsin-Hsi Chen. Pause and stop labeling for chinese
sentence boundary detection. In Proceedings of RANLP, pages 146–153,
2011.

[4] Hen-Hsen Huang, Chuen-Tsai Sun, and Hsin-Hsi Chen. Classical chinese
sentence segmentation. In Proceedings of CIPS-SIGHAN Joint Conference
on Chinese Language Processing, pages 15–22, 2010.

[5] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data.
In Proceedings of the International Conference on Machine Learning, pages
282–289, 2001.

[6] Yang Liu, Nitesh V. Chawla, Mary P. Harper, Elizabeth Shriberg, and Andreas
Stolcke. A study in machine learning from imbalanced data for sentence
boundary detection in speech. Computer Speech & Language, 20(4):468–
494, 2006.

[7] Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary Harper. Using
conditional random fields for sentence boundary detection in speech. In Pro-
ceedings of the 43rd Annual Meeting of ACL, pages 451–458. Association for
Computational Linguistics, 2005.

[8] Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using
transformation-based learning. In Proceedings of the Third ACL Workshop
on Very Large Corpora, pages 82–94. ACL, 1995.

[9] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees.
In Proceedings of International Conference on New Methods in Language
Processing, volume 12, pages 44–49, 1994.

[10] Mark Stevenson and Robert Gaizauskas. Experiments on sentence boundary
detection. In Proceedings of the sixth conference on Applied natural language
processing, pages 84–89. ACL, 2000.

 86

Historical spelling normalization. A comparison of
two statistical methods: TICCL and VARD2

Martin Reynaert, Iris Hendrickx and Rita Marquilhas

TiCC research group, Tilburg University, Tilburg, The Netherlands
Centro de Linguística da Universidade de Lisboa, Lisboa, Portugal

E-mail: reynaert@uvt.nl, iris@clul.ul.pt, rmarquilhas@fl.u.pt

Abstract

We present a comparison of two statistical tools for spelling normalization
of historical Portuguese. The VARD2 tool has been originally developed for
Early Modern English but has been successfully ported to the Portuguese
language. The second tool TICCL was developed for English and Dutch.
The VARD2 tool was explicitly developed for historical data, while TICCL
aims to handle spelling and Optical Character Recognition variation in very
large corpora of digitized 19th and 20th century text. Here we detail both
tools, their methods, strengths and weaknesses and their performance on the
task at hand.

1 Introduction

There are several reasons why spelling normalization of historical text is essential.
Information extraction or retrieval tasks on a historical corpus cannot be handled
by any standard search system. If the user would query for a particular modern
key word in the corpus, such a system will not be able to retrieve all relevant
matches for the query as the different spellings of a word will not be recognized
and retrieved. Creating a corpus version that is normalized for spelling would
alleviate this problem.

Furthermore, automatically adding linguistic information such as part-of-speech
(POS) tags will be much easier on a normalized version of the historical text. Tools
such as POS-taggers have been developed for contemporary text and these tools
will make more errors when labeling unknown spelling variants [12]. [8] have
shown that automatic normalization of the historical data leads to more accurate
POS-labeling. In a previous study we have already shown that automatic normal-
ization of the historical data leads to more accurate POS-labeling [8].

Another motivation for spelling normalization is that these old texts with many
different spellings and archaic words are difficult to read for non-specialists. These

 87

historical texts are a part of the country’s cultural heritage that should be publicly
available. A modernized version facilitates the accessibility of such historical texts
for the general public.

Here we present a comparison between two different tools, VARD2 [2] and
TICCL [16], for automatic spelling normalization of a corpus of historical Por-
tuguese. VARD2 has already been compared against two other spelling check-
ers, the MS-Word spelling checker and Aspell on historical English text [13]. It
was shown that VARD outperforms the other tools as it has a higher precision.
TISC (Text-Induced Spelling Correction), the precursor of TICCL, has also been
compared with Aspell, Ispell and the MS-Word spelling checker for contemporary
Dutch and English text [15] and reached much higher precision than the other sys-
tems due to taking into account the full vocabulary of the texts to be corrected and
due to making use of bigram information, thereby performing context-sensitive
spelling correction on non-words. Bigram correction is now also implemented in
TICCL.

In this investigation we apply both tools to Portuguese, a morphologically rich
language substantially different from either English or Dutch, for which these tools
were originally developed.

Moverover, the corpus used in these investigations is the Portuguese historical
CARDS-FLY corpus that consists of digitally transcribed collections of personal
letters and was developed for the historical study of Portuguese language and so-
ciety. Obviously, handwritten personal letters contain more spelling variation than
letters that were produced by professional scribes or clerks or than typeset and
printed books that were published by printers.

In the next section we first give a brief account of the purpose and history of
the CARDS-FLY corpus. In section 3 we discuss related work on spelling nor-
malization for historical text. We present both tools in section 4 and present our
experiments and results on a subset of the full corpus that was manually normalized
for spelling in section 5. We discuss our findings in section 6.

2 Corpus

The study of language history can be supported by rather ‘popular’ sources that
exist by the thousands, unpublished and ignored, on the stacks of public archives
of the western countries. These sources are namely private letters, in our case,
confiscated by courts of law. They differ from literary texts and from institutional
documents in that they were not written for posterity or public reading. They were
not written to be preserved, but they were nevertheless so. They were meant to
circulate in the private sphere but, again, they went public. The judges of different
courts - either religious, or civil or military - used the letters as instrumental proof,
so their style quality was irrelevant, and they would do even if poorly written. The
only thing that mattered was their referential contents.

In Early Modern Portugal, two different courts, namely the Inquisition and the

 88

Figure 1: Example of a manually transcribed letter from 1592 addressed to mer-
chandiser Joào Nunes. English translation: I have more than once asked Your
Honour and begged Your Honour to leave me alone. But Your Honour has insisted
on defying me, dishonouring me, lessening me, engaging in gossip about me at
every corner, both by words spoken and by letters written to whoever you choose.
I remind you, speaking as a friend...

Royal Appeal Court (Casa da Suplicação) collected and filed in the courts proceed-
ings many of these letters. In the CARDS Project (Cartas Desconhecidas), 2.000
of such documents were detected, contextualised, and transcribed by a team of lin-
guists and historians of the Early Modern period. The project ran from 2007 to
2010. The role of the linguists was to decipher and publish the manuscripts with
philological care in order to preserve their relevance as sources for the history of
language variation and change. The role of the historians was to contextualise the
letters’ discourse as social events. Almost half of the documents came from early
19th century criminal lawsuits of the Royal Appeal Court, and the other half from
Inquisition lawsuits of the 17th and 18th centuries (plus a small sample from the
16th). In a complementary way (10 per cent), aristocratic families’ legacies were
also searched for private letters. The whole set of transcriptions, accompanied by
a context summary, was given a machine-readable format, which allowed for the
assemblage of an online Portuguese historical corpus of the Early Modern Ages.

As a sequel to CARDS, the FLY project (Forgotten Letters, Years 1900-1974)
was launched in 2010 by the same core team, now accompanied by Modern history
experts, as well as sociology experts. The aim was to enlarge the former corpus
with data from the 20th century. Since collecting personal papers from contempo-
rary times is a delicate task, given the need to guarantee the protection of private
data from the public scrutiny, the letters of the FLY project come mostly from do-
nations by families willing to contribute to the preservation of the Portuguese col-
lective memory having to do with wars (World War I and the 1961-1974 colonial
war), emigration, political prison and exile. These were also contexts favourable
for a high production of written correspondence with family and friends because in
such circumstances strong emotions such as fear, longing and loneliness are bound
to arise.

The CARDS-FLY corpus [6] is thus a linguistic resource prepared for the his-
torical study of Portuguese language and society. Its strength lies in the broad social
representativeness, being entirely composed of documents whose texts belong to
the letter genre, the private domain, and the informal linguistic register.

 89

The current version of the CARDS-FLY corpus contains 3,455 letters with
1,155,206 tokens involving 2.237 different authors and addressees.

We show an example in Figure 2 of a digital transcription of a letter written in
1592, the version on the left side has the original spelling, apart from word bound-
aries normalization (except for enclitics), the right side was manually normalized
for spelling1. This letter exemplifies the characteristics of this corpus of written his-
torical letters: many letters do not contain punctuation marks, there are accents like
the tilde that no longer have the same distribution in the current spelling, capital-
ization is used in a different way and does not signal sentence starts. Abbreviations
such as vm. [P: Vossa Mercê E: Your Honour] are often used in these personal
letters. Another difficulty is that there is not always a one-to-one mapping between
words in the old and new spelling, since orthography was non-existing and creative
spellings were far from rare, especially when writers were half-illiterate men and
women.

3 Related work

As mentioned in the introduction, modernizing historical text aids information re-
trieval (IR) results. Another strategy is to adapt the search interface in such a way
that it can cope with the spelling variation. This approach was taken by Gerlach
et al. [4] who use a modern lexicon combined with transformation rules to expand
the search query to capture also the spelling variants in the German historical text
collection being searched. Other studies discuss several distance measures that
augment the search query with fuzzy string matching [9] or acquire edit distance
weights using unsupervised learning techniques [7].

A tool that was specifically developed to normalize the spelling of full texts,
is the VARiant Detection (VARD) tool [13] that was developed for Early Modern
English. We will discuss in detail its follow-up, the tool VARD2, in section 4.1.

Craig and Whipp [3] developed a method for automatic spelling normalization
for early modern English. They combine list lookup of variants together with more
sophisticated methods based on approaches taken in Word Sense disambiguation
tasks to resolve ambiguous spelling variants that can be normalized to multiple
modern forms.

The Historical Dictionary of Brazilian Portuguese (HDBP) is constructed on
the basis of a historical Portuguese corpus of approximately 5 million tokens. As
there was no standard spelling at the time (16th to 19th century), it is not easy to
create lexicographic entries on the basis of the corpus or to produce reliable fre-
quency counts. Therefore [5] developed an automatic rule-based variant detection
method and created a spelling variants dictionary containing approximately 30K
clusters of variants (we refer to this list as the HDBP-variant list).

1Full description at: http://alfclul.clul.ul.pt/cards-fly/index.php?page=
infoLetter&carta=CARDS4006.xml

 90

The Corpus of Early English Correspondence (CEEC) [11] is a corpus similar
to the CARDS-FLY corpus as both corpora consist of two collections of historical
letters, although the CEEC, contrary to CARDS-FLY, is not based on previously
unpublished material. A start is said to be made with a spelling normalization step
using the VARD2 tool.

4 Tools

4.1 VARD2

The VARD2 tool [2] is a Java program with several options for the normalization of
spelling variation in text. The tool offers an interactive mode in which the program
suggests a list of candidates for each unknown word in the text and allows users to
select the best choice in a manner similar to the Microsoft Word spelling correction
module. The tool can also be used to automatically correct a full text and it can be
trained and tuned by the user for a specific data set. In these experiments we opted
for this last option.

VARD2 works as follows. Each word is checked against a modern lexicon.
Words that are not present in the lexicon are potential spelling variants. Note that
this limits VARD2’s capacity to the detection of non-word errors. For each po-
tential spelling variant, a list of candidate modern counterparts is generated using a
variant list consisting of pairs of variants and their modern counterparts, a character
rewrite rule list and a Soundex algorithm to find phonetically similar counterparts.
These modules together determine the confidence weight that is assigned to each
candidate modern equivalent. VARD2 has a confidence threshold that determines
what weight is needed to actually replace the variant with the highest weighted
modern equivalent that exceeds the minimum threshold. If no likely candidates are
found, the variant is kept.

Hendrickx and Marquilhas previously adapted the VARD2 tool for the Por-
tuguese language [8] and here we use their Portuguese version of the tool. They
replaced the English versions of the modern lexicon, the variant list with pairs of
variants and their modern counterparts and the rewrite rule list with Portuguese
versions. As variant list they used the HDBP-variant list combined with a variant
list extracted from training material. The rewrite rule list is based on the edit rules
automatically generated by the DICER tool [1] which takes as input a list with
spelling variants and modern equivalents and extracts character string transforma-
tion rules to capture the spelling variation. Only those rules that occurred 5 times
or more were retained. The rules in this set that were too generic were manually
edited to be made more specific. The final rewrite rule set of VARD2 consisted of
99 rules. VARD2 can be trained on a data set that is already manually normalized.
When VARD2 is being trained, the program adds all normal words to the modern
lexicon and adds all variants from the training material and their frequencies to the
variant list. The different confidence weights for each replacement method are also
adapted on the basis of the training data.

 91

4.2 TICCL

Text-Induced Corpus Clean-up (TICCL) is described more fully in [16]. It is now a
fully-fledged web application and service due to CLARIN-NL project TICCLops.
The main lexical variant look-up mechanism in TICCL is based on anagram hash-
ing. Informally, this works as follows: for all the words in the lexicon and in the
corpus, a numerical representation called the anagram value is calculated by mak-
ing the sum of the code page values of the individual characters of the word raised
to power five. The numerical value obtained is used as the index key in a hash,
the actual symbolic word(s) having this value are added as the hash value. Words
consisting of the same bag of characters will have the same anagram value. This
is why this is called anagram hashing. Given the anagram for a particular word (or
set of anagrams), called the focus word, TICCL builds list A which contains the
anagram values for all the individual characters in the bag of characters as well as
the anagram values for all the possible combinations of any two characters in the
bag of characters. TICCL also has list B, which has the same for all the charac-
ters in the alphabet. Given a focus word, all its near neighbours can now be found
by exhaustively subtracting any value from list A from the focus word’s anagram
value and adding any value from list B. If the resulting anagram value is present
in the anagram hash, a numerical near neighbour has been detected. Retrieving the
symbolic values, i.e. the actual word or set of anagrams, the edit distance to the
focus word for each needs to be checked. Correction Candidates or CCs are those
instances that differ by less or equal the number of edits allowed by the Levenshtein
distance (LD), the limit of which is set by a TICCL parameter.

The number of look-ups required per focus word depends on the size of the
alphabet. In prior work, in order to reduce the search space, TICCL was used
with a reduced alphabet. Its lexicons and the corpus it works on were thoroughly
normalized by e.g. rewriting any character bearing a diacritical mark as a single
digit and all punctuation marks as another digit, all numbers and digits present
having been normalized into as single, different, digit. In this work, we retain all
unicode points below a high unicode number. This has the benefit of not having to
restore or retrieve the original diacritical word form for output purposes.

Further, we have worked only in what [16] calls focus word mode, the corpus
not being very large. In character confusion mode, TICCL scales to the largest
corpora.

New in the present work is that TICCL has been applied to Portuguese and has
been equipped with both absolute correction [10] and bigram correction capabili-
ties.

Converting TICCL to Portuguese involved little more than providing it with a
Portuguese lexicon, which was the same one as used for VARD2. Derived from
the lexicon is a word confusion matrix by applying TICCL’s character confusion
module. In its essence this matrix is a list of the anagram value references between
each word in the lexicon and all the other words in the lexicon that are reachable
within the confines of the particular Levenshtein or edit distance set. In the present

 92

work we have limited ourselves to LD set to 2 edits.
This word confusion matrix in fact provides the list of all possible confusables

(also known as real-word errors in spelling correction or ‘false friends’ [14]). The
operative definition of confusables is therefore that they are those words that can be
formed from any given focus word in the lexicon by applying at most the number
of edits implied by the LD handled. Use of the word confusion matrix allows
for preventing the system from returning a valid lexicon word for any given valid
(because present in the lexicon) focus word. This in fact implies that in its current
implementation, TICCL cannot perform real-word correction. We will return to
this matter in the discussion of the results.

Also in the current implementation, bigram correction is applied. In terms of
the informal discussion of how TICCL works above it is easy to see that given the
anagram values for all combinations of two consecutive words in the corpus, the
corpus bigrams, the same mechanism can be applied to retrieve bigram CCs. This
is because the numerical distance between the anagram values for e.g. the English
words ‘cat’ and ‘rat’ will be the same for the likely bigrams ‘the cat’ and ‘the rat’
or ‘white cat’ and ‘white rat’, i.e. the numerical anagram value distance for ‘c’ to
‘r’. Bigram correction is here applied only to short words. In prior work, a lower
word length threshold was always applied. The word length threshold in our un-
igram mode experiments here was set to six characters. For very short words the
lexical neighbourhood is very dense, substituting just one or two characters leads
to very many other short words. We here try to overcome this problem for short
words by looking in the corpus for variants for the bigrams they occur in. In doing
so, TICCL handles short word bigrams as if they were just ordinary unigrams, the
only difference being that now the space character is also at play. In its essence,
by searching in only the bigrams containing a particular short focus word, the pos-
sible search space is effectively and efficiently reduced by the contexts it shares
with potential near neighbours. Having retrieved variant bigrams, the overlapping,
exactly matching left- or right bigram part is then discarded and the remaining pair
of unigram variants is further handled in exactly the same way as the longer word
pair variants which would have been retrieved. This approach has its limitations
and this too will be further dealt with in the results section.

The absolute correction strategy was defined by [10], who called it ‘limited
but very cost-effective’. We equipped TICCL with absolute correction capabilities
based on the collection of lexical variants as present in the training set. Put in a
misspelling dictionary, when one of the known historical variants is encountered,
it is simply replaced by the contemporary form.

5 Experiments

For the evaluation experiments of TICCL and VARD2 we use a subpart of 200
letters from the CARDS-FLY corpus. These letters were manually normalized by
one linguist but difficult cases were discussed with a second expert. This data set

 93

was split in 100 letters for training and tuning the tools, and 100 letters were set
apart as a true test set. The test set contains 37,372 tokens of which 6,978 (19%)
are spelling variants that need to be detected and normalized by the tools. We
measure the performance of the tools and compute accuracy, recall, precision and
their harmonic mean, F-score, on the spelling variants.

In our experiments with TICCL on the training set we learned that absolute
correction using all the pairs in the variant list was highly detrimental to precision.
In the end we settled on a subdivision where words that are only in the corpus
and not in the lexicon were allowed to be absolutely corrected. Words that are in
both were evaluated on whether they were ambiguous or not, in the sense that they
have more than a single possible resolution in the variant list. Those that were am-
biguous were not let to be absolutely corrected, with the one exception of the pair
‘q-que’; the others were let be handled by TICCL’s proper correction mechanism.
The ones that were not ambiguous were not corrected, with the exception of three
pairs (‘hum-um’, ‘porem-porém’2 and ‘exmo-excelentíssimo’), which were abso-
lutely corrected. Absolute correction, when applied, was given precedence over
whatever TICCL had retrieved in all cases. For ambiguous cases we retained the
most frequent variant in the variant list only, which results in a single CC for all
instances of absolute correction, enhancing ranking.

VARD2 was trained on the training material of 100 letters and this tuned each
of the modules for this particular data set. We used VARD2 in its "batch" mode
in which each detected spelling variant is automatically replaced by its best-first
ranked word form.

In table 2 we show the best-first ranked performance of TICCL and VARD2
on the test set. The results reported for TICCL are those obtained when TICCL
had access only to the variant list obtained from the training set. TICCL2 reports
results obtained when TICCL had access both to the list obtained from the training
set, as well as to the HDBP-variant list. VARD2 was trained on both.

Tool acc prec recall f-score
VARD2 94.65 96.99 73.63 83.71
TICCL 93.25 94.27 67.96 78.98
TICCL2 93.50 94.38 69.33 79.94

Figure 2: Best-first ranked results on the test set of 100 letters

5.1 Test results analysis

It should be noted that the results reported are necessarily precision and recall
scores on tokens, not on word types because of the ambiguity of part of the original
tokens which may have to be resolved to different contemporary word forms.

2Actually, ‘porem’ is ambiguous in Modern Portuguese but not in this corpus.

 94

Tool acc precision recall f-score
TICCL-bi-rank3 94.11 94.62 72.57 82.14
TICCL-bi-rank5 94.35 94.71 73.89 83.01
TICCL-bi-rank10 94.55 94.78 74.92 83.69
TICCL-bi-rank20 94.66 94.82 75.52 84.08
TICCL-uni-rank20 94.42 95.03 73.99 83.20
VARD2-notraining 90.58 93.79 53.05 67.77
TICCL-bi-rank20-noabsolut 89.18 92.03 46.02 61.35

Figure 3: Results on the test set of 100 letters measuring TICCL’s 3, 5, 10 and 20
first-best ranking with bigram correction and with absolute correction. Also shown
is the effect of TICCL not performing bigram correction. Finally, the effects of
VARD2 and TICCL not having been trained/using absolute correction with the
variation list(s)

The accuracy of the original corpus before correction is 81.33%. This means
that less than 20% of the original texts need to be normalized. VARD2 manages
to improve texts by 13.32%. TICCL manages an improvement of 11.52% and
TICCL2 reaches 12.17%.

VARD2 returns only best-first ranked results. These are compared with TICCL’s
best-first ranked results in Table 2. VARD2, being specially trained on manually
edited rules specific for the task, is the clear winner. TICCL has not received any
special training, but has had bigram correction at its disposal and has been equipped
with new code for dealing with the absolute correction.

Results reported in the upper half of Table 3 show clearly that if TICCL’s rank-
ing mechanism might be improved, it can potentially best VARD2. These are re-
sults obtained when TICCL’s absolute correction had access only to the variant
list obtained from the training set. Also, in these experiments, TICCL lacked the
benefit of a background corpus of contemporary Portuguese bigrams.

In the lower half of Table 3 we show the results of a few ablation tests. First
we give the result of running TICCL in unigram mode only, then we show what
VARD2 and TICCL manage to accomplish without having the benefit of the infor-
mation in the variant list(s).

In unigram mode only TICCL is in fact a bit more precise. But it necessarily
loses recall: it has not itself retrieved any variants for words shorter than six charac-
ters other than the ones it has been able to resolve through the absolute correction.
This clearly shows the improvement due to the bigram correction.

Further in the same table we also show performance results obtained when the
systems have not had the benefit of the domain specific variant list(s) either for
training or for the purpose of absolute correction. Both benefit a great deal, but
TICCL clearly most. As the CARDS-FLY corpus consists of data from a very spe-
cific textual genre with typical characteristics, we observe that training and tuning

 95

the spelling checkers explicitly on this genre, leads to a substantial performance
gain.

6 Discussion

The results of the comparison of TICCL and VARD2 shed valuable light on the
problem of historical spelling normalization.

First and foremost, the results show that there is an upper limit to what can
be achieved with what is essentially non-context sensitive correction on historical
data. Probably neither of the systems in these tests have reached this upper bound,
but both nevertheless get close to it.

The situation is that TICCL’s absolute correction and VARD2’s equivalent, a
special purpose rule, work splendidly for cases such as ‘q’ which unambiguously
should be normalized to ‘que’. However, the instances of the single character
‘v’ in the historical letters are variously resolvable to ‘via ’ (on just 1 occasion),
‘vossa’ (42 times), ‘vossas’ (17 times) and ‘vosso’ (just once). The corpus contains
many more similar instances. This implies full-fledged context-sensitive correc-
tion, which neither system can currently provide.

It would be legitimate to wonder if the task undertaken here should not be
divided over two separate tasks, to be handled possibly by different systems and
evaluated separately. The results show that about one quarter of the test instances
cannot be solved by either of the systems. This implies that either the systems
need to be equipped with mechanisms that do allow them to be solved, or that
other systems or approaches should be sought and applied.

As it is, the systems are measured in part on test instances they were not de-
signed to be able to handle. This in part obscures their capabilities of handling
what they were meant to be able to handle.

TICCL will probably never be set to handle spelling variation exceeding LD
4. Even applying LD 3 would have an adverse effect on its precision. It could
nevertheless, much in the way VARD2 is, be taught on the basis of the variant
list(s) to look for specific higher edit distance variants. The variant list has, e.g. the
pair ‘exmo’, an abbreviation, which should be expanded to ‘excelentíssimo’. This
is currently handled by the absolute correction, but the test set might as well have
the pairs ‘exma-excelentíssima’, as well as the plural forms. By teaching TICCL
to look for the anagram value for ‘elentíssi’, this desirable generalization would be
achieved. This we will implement in future work.

The results in Table 3 over the various ranks show that TICCL potentially
reaches the same or an even higher level of performance as VARD2 currently does.
Our conversion of TICCL to Portuguese so far has been inadequate in that it can-
not deal with the higher degree of morphological variation in Portuguese compared
to Dutch and English which it had so far been applied to. Also, in these experi-
ments it turned out that the ranking mechanism described in [16] did not deliver the
results hoped for. The performance results reported in Table 3 were obtained by

 96

leaving out the frequency information from the final ranking of CCs retrieved. In
the absence of a large, contemporary background corpus, the frequencies observed
in the historical test corpus were too sparse or totally unavailable for contemporary
word forms and their bigram combinations. Best results, as reported, in these tests
were obtained by the combination of ranking on frequency of character confusion
observed and LD, only.

A fruitful path for future work is to study the strengths of both systems and to
see how these might be combined. The DICER tool provides a wealth of statistics
on the variation present in the training set. Certainly TICCL would benefit from
direct use of these statistics in its ranking of CCs. Also, we should study how to
address more properly the problem of morphological variability in TICCL’s rank-
ing. In conclusion, some generalization from the information available to TICCL
in the absolute correction list should be of benefit. Certainly for higher LD vari-
ation which is highly present in these historical texts due to the high incidence of
abbreviations, providing TICCL with the common character confusions above the
LD limit it is set to work with, would allow it to emulate VARD2 in that it would
then also be trained to explicitly identify and retrieve these variants.

7 Acknowledgements

TICCL has further been developed by Martin Reynaert in the Dutch NWO project
Political Mashup. Iris Hendrickx was funded by FCT Doctoral program Ciência
2008. Rita Marquilhas is supported by the projects FLY (PTDC/CLE-LIN/098393/
2008) and Post Scriptum (ERC, Adv Grant 2011, GA 295562).

References

[1] A. Baron. Dealing with spelling variation in Early Modern English texts.
PhD thesis, University of Lancaster, Lancaster, UK, 2011.

[2] A. Baron and P. Rayson. VARD2: A tool for dealing with spelling variation in
historical corpora. In Proceedings of the Postgraduate Conference in Corpus
Linguistics, 2008.

[3] H. Craig and R. Whipp. Old spellings, new methods: automated proce-
dures for indeterminate linguistic data. Literary and Linguistic Computing,
25(1):37–52, April 2010.

[4] A. Ernst-Gerlach and N. Fuhr. Retrieval in text collections with his-
toric spelling using linguistic and spelling variants. In Proceedings of the
ACM/IEEE-CS Conference on Digital Libraries, pages 333–341, 2007.

[5] R. Giusti, A. Candido, M. Muniz, L. Cucatto, and S. Aluísio. Automatic
detection of spelling variation in historical corpus: An application to build

 97

a Brazilian Portuguese spelling variants dictionary. In Proceedings of the
Corpus Linguistics Conference, 2007.

[6] M. Gomes, A. Guilherme, L. Tavares, and R. Marquilhas. Projects CARDS
and FLY: two multidisciplinary projects within linguistics. In Proceedings
of the Eight International Conference on Language Resources and Evalua-
tion (LREC’12), Istanbul, Turkey, May 2012. European Language Resources
Association (ELRA).

[7] A. Hauser and K. Schulz. Unsupervised learning of edit distance weights for
retrieving historical spelling variations. In Proceedings of the First Workshop
on Finite-State Techniques and Approximate Search, pages 1–6, Borovets,
Bulgaria, 2007.

[8] I. Hendrickx and R. Marquilhas. From Old Texts to Modern Spellings: An
Experiment in Automatic Normalisation. Journal for Language Technology
and Computational Linguistics (JLCL), 26(2):65–76, 2011.

[9] S. Kempken, W. Luther, and T. Pilz. Comparison of distance measures for
historical spelling variants. In Artificial Intelligence in Theory and Practice,
volume 217, pages 295–304. Springer Boston, 2006.

[10] J.J. Pollock and A. Zamora. Automatic spelling correction in scientific and
scholarly text. Commun. ACM, 27(4):358–368, 1984.

[11] H. Raumolin-Brunberg and T. Nevalainen. Historical sociolinguistics: The
corpus of Early English Correspondence. Creating and Digitizing Language
Corpora, 2: Diachronic Databases:148–171, 2007.

[12] P. Rayson, D. Archer, A. Baron, J. Culpeper, and N. Smith. Tagging the Bard:
Evaluating the Accuracy of a Modern POS Tagger on Early Modern English
Corpora. In Proceedings of the Corpus Linguistics Conference (CL2007),
University of Birmingham, UK, 2007.

[13] P. Rayson, D. Archer, and N. Smith. VARD versus Word: A comparison of
the UCREL variant detector and modern spell checkers on English histori-
cal corpora. In Proceedings from the Corpus Linguistics Conference Series,
volume 1, Birmingham (UK), 2005.

[14] U. Reffle, A. Gotscharek, C. Ringlstetter, and K. Schulz. Successfully detect-
ing and correcting false friends using channel profiles. IJDAR, 12(3):165–
174, 2009.

[15] M. Reynaert. Text-Induced Spelling Correction. PhD thesis, Tilburg Univer-
stity, 2005.

[16] M. Reynaert. Character confusion versus focus word-based correction of
spelling and OCR variants in corpora. International Journal on Document
Analysis and Recognition, 14:173–187, 2010. 10.1007/s10032-010-0133-5.

 98

