
(Semi-)Automatic Normalization of Historical
Texts using Distance Measures and the Norma tool

Marcel Bollmann

Department of Linguistics
Ruhr-Universität Bochum

E-mail: bollmann@linguistics.rub.de

Abstract

Historical texts typically show a high degree of variance in spelling. Normal-
ization of variant word forms to their modern spellings can greatly benefit
further processing of the data, e.g., POS tagging or lemmatization. This
paper compares several approaches to normalization with a focus on methods
based on string distance measures and evaluates them on two different types
of historical texts. Furthermore, the Norma tool is introduced, an interac-
tive normalization tool which is flexibly adaptable to different varieties of
historical language data. It is shown that a combination of normalization
methods produces the best results, achieving an accuracy between 74% and
94% depending on the type of text.

1 Introduction1

Historical language data poses a difficult challenge for natural language processing.
One of the biggest problems is the lack of standardized writing conventions: the
exact characters and symbols used to spell a word can depend on many differ-
ent factors such as dialectal influences, space constraints on a page, or personal
preferences of the writer. Consequently, while annotation tasks such as part-of-
speech (POS) tagging are well explored for modern languages, with reported accu-
racies as high as 97% (Brants [5]), the same cannot be said for historical varieties.
In a study done on Early New High German (Scheible et al. [12]), tagging ac-
curacies using taggers trained on modern German were below 70%. A possible
solution is a pre-processing step during which word forms are converted to their
modern spellings, which the same study found to increase tagging accuracy by
10 percentage points. This process will be referred to here as ‘normalization’.

1The research reported here was financed by Deutsche Forschungsgemeinschaft (DFG), Grant
DI 1558/4-1.

 3



When creating a corpus of historical texts, manually normalizing all data can
be a tedious and time-consuming process. Furthermore, despite the many inconsis-
tencies, spelling is typically not arbitrary, and many regularities can still be found.
In Early New High German (ENHG), typical examples are ‘v’ for (modern) ‘u’,
as in vnd – und ‘and’, or ‘y’ for (modern) ‘i’, as in seyn – sein ‘be’. This leads
to the question of how the process of normalization can be automated. Several
methods for automatic normalization have been proposed (some of the more recent
ones are, e.g., Baron et al. [3], Jurish [9], Bollmann et al. [4]), though no clear
“best” method has been identified. On the contrary, it is unclear to which extent
the results are even comparable, as the amount and degree of spelling variance can
be expected to differ greatly between texts. At the same time, this variance suggests
the need for normalization methods which are flexibly adaptable to different types
of texts.

This paper addresses these issues in two ways: (1) by comparing different
normalization methods that can be flexibly trained to handle different spelling
varieties; and (2) by presenting the interactive normalization tool Norma, which
provides a framework to combine, train, and compare different methods of nor-
malization.

The structure of this paper is as follows. Sec. 2 presents a rule-based method
for normalization, while Sec. 3 describes a normalization approach based on string
distance measures. Sec. 4 introduces the Norma tool. In Sec. 5, all presented nor-
malization methods are evaluated on two different types of historical texts. Sec. 6
discussed the comparable VARD tool, Sec. 7 presents related work and further
conceivable approaches to the normalization task, and Sec. 8 concludes.

2 Rule-Based Method

Rule-based normalization will be used as a comparison to the distance measures
described in Sec. 3. Its main concepts are only briefly summarized here; a detailed
description can be found in Bollmann et al. [4].

The rule-based method applies a set of character rewrite rules to a historical
input string in order to produce its normalized variant. Rewrite rules operate on
one or more characters and take their immediate context into account; an example
rule is shown in Ex. (1).

(1) j → ih / # _ r
(‘j’ is replaced by ‘ih’ between a word boundary (‘#’) and ‘r’)

The rules are not meant to be specified manually, but are supposed to be learned
from training data (using a modified Levenshtein algorithm). To normalize an input
string, it is processed from left to right, with one rewrite rule being applied at each
position. Typically, there will be several applicable rules at each given position;
in this case, the frequency of a rule during training determines how likely it is to
be used during the normalization process. In case there is no applicable rule, the

 4



default is to leave the character at that position unchanged. Additionally, to prevent
the generation of nonsense words, all normalization candidates are matched against
a target lexicon. Therefore, it is possible that the rule-based method sometimes fails
to find any normalization candidate at all.

3 Distance Measures

Levenshtein distance between two strings is defined as the number of substitutions,
insertions, and deletions required to transform one string into the other (Leven-
shtein [11]). More generally, the term “distance measure” will be used here to
describe any function that accepts a pair of strings and returns a positive, numeric
value describing their distance.

Any distance measure can theoretically be used for the purpose of normaliza-
tion. Given a (finite) lexicon of modern word forms, the distance of a historical
input word form to each entry in the modern lexicon can be calculated; the word
form with the lowest distance to the input string is then chosen as the normaliza-
tion.2

3.1 FlexMetric

FlexMetric (Kempken [10]) is a measure originally designed for rating historical
and dialectal spelling variants, which makes it appear ideal for the normalization
task. It is supposed to be flexible in the sense that it can easily be adapted to
different types of text and language varieties. This is achieved by using a variant of
Levenshtein distance with weights, where instead of simply counting the number of
edit operations, each such operation is assigned a weight w (also called “cost”) with
0 < w ≤ 1. Weights can be individually defined; if w = 1 for all edit operations,
this approach is identical to standard Levenshtein distance.

However, instead of allowing arbitrary weights, FlexMetric introduces the con-
cept of character groups, which contain characters that are closely related to each
other. Conceivable groupings for German are, e.g., {s, z, ß} or {i, y}. These
groups are then assigned individual costs, which in turn define the cost of character
substitutions within that same group. Substitutions of characters that do not belong
to the same group are assigned a default cost of 1. Note that this approach induces
a symmetry: the substitution i→ y always costs the same as y→ i.

Additionally, in the extended version of the algorithm, which is used here,
multiple occurrences of the same character are ignored—e.g., the transformation
n→ nn (and vice versa) always has a cost of 0.

The relative simplicity of this approach is deliberate; the intention was to allow
for the creation of a good parametrization by manual inspection of a small portion
of the input data and without too much effort (Kempken [10], p. 61). Again,
this seems well-suited for normalization, as historical data typically shows a lot

2In practice, finding an efficient algorithm for this operation can be a limiting factor, though.

 5



of variety between texts, requiring an easily adaptable normalization method, and
training data is typically not available (or not in large amounts).

3.2 MultiWLD

In the Luther text used for evaluation (cf. Sec. 5), the substitution v→ u is by far
the most common one; however, the opposite direction, u → v, is comparatively
rare. This leads to the question whether costs should actually be defined in a
symmetric way. Furthermore, it is questionable whether characters should be
treated in isolation: e.g., ‘ck’ often occurs for modern ‘k’, as in werck – werk
‘work’, and does not represent a different phoneme. Treating this example simply
as a deletion of ‘c’ would be a case of overgeneralization, though. Many similar
examples for German can be found (mb→ m, i→ ie, a→ ah, etc.).

These considerations led to the MultiWLD3 algorithm. It is supposed to be
similar to FlexMetric in the sense that costs should be easily definable by intu-
ition and/or manual inspection of a small input sample, but differs in the aspects
mentioned above: (1) it is directional (instead of symmetric); and (2) it allows the
definition of substitutions with more than one character on either side.

Although these changes draw nearer to the idea of the rule-based approach (cf.
Sec. 2), there are two important differences to keep in mind. Firstly, the distance
measures described here only assign a cost to actual modifications to the input
string; i.e., it is always preferred that a character is left unchanged, which is not the
case in the rule-based method. Secondly, while the definition of multi-character
substitutions introduces a form of context-sensitivity (e.g., a→ ah represents the
insertion of ‘h’ after ‘a’), it is up to the creator of the parametrisation how much and
which context, if any, to include in each rule. In contrast, the rule-based approach
always requires exactly one character on each side as context.

4 The Norma tool

Norma is a tool for (semi-)automatic normalization of historical language data. It
can be used both interactively and non-interactively, and is intended to be flexible
in the sense that it is not restricted to any particular method(s) of normalization.
Normalization methods—or “normalizers”—are encapsulated in external modules
for easy extensibility. Parameter sets of normalizers can be dynamically retrained
during the normalization process if the normalizer supports it. This way, Norma
supports an incremental learning approach to normalization.

Norma is written in Python 2.7.4 At the time of writing, only a command-line
interface is available.

3MultiWLD = Weighted Levenshtein Distance with multi-character substitutions
4http://www.python.org/

 6



4.1 Modes of operation

Norma supports three modes of operation: batch, interactive, and training mode.
In batch mode, Norma takes an input file consisting of one historical word form

per line and, for each line, outputs the suggested normalization of that word form.
Interactive mode works the same way as batch mode, but prompts the user with

each generated normalization, which he or she can either confirm or correct. The
resulting pair of historic and (confirmed) modern word form is then used to train
the normalizers. Ideally, the number of corrections the user has to make should
decrease over time as the normalizers are supplied with more training data and can
adjust their set of parameters accordingly.

Finally, there is a training mode, which works similarly to interactive mode
except that the confirmed modern word form is not entered by the user, but given
in the input file itself. Apart from training normalizers from a set of manually nor-
malized data, this mode can also be used to “simulate” the interactive normalization
process, e.g. to evaluate the effect of incremental learning.

4.2 Normalizer modules

Norma itself does not implement any normalization or learning techniques, but
rather depends on external normalizer modules to provide that functionality.

Normalizers exchange data with Norma via a certain, pre-defined interface of
functions. The normalization function is given a historical word form as input
and should return its normalized form along with a confidence score. Confidence
scores are numerical values between 0 and 1; a score of 0 is taken to mean that
no suitable normalization could be found at all. The training function is given a
historical word form along with its modern counterpart and is expected to trigger
the normalizer’s training algorithm.

4.3 Normalization cycle

The normalization process in Norma can be described as a cycle consisting of the
following steps:

1. fetching a historical input word form;

2. generating a normalization candidate for the historical word form using one
or more normalizers;

3. validating the candidate word form against the correct normalization; and

4. training the normalizers with the historical word form and its correct nor-
malization.

This cycle is repeated until all input word forms have been processed. If training is
disabled or impossible, e.g. when batch-processing texts, the last two steps will do
nothing. Fig. 1 shows a flow diagram visualizing the normalization cycle.

 7



Input

Norm. 1 Norm. 2 . . . Norm. n

Validation

Training

historical
word form

generated
word form

validated
word form

Figure 1: Flow diagram of a normalization cycle (with training) in Norma

The first step is the retrieving of a historical word form as input. Typically, this
will be read from a text file, from which lines are processed in sequential order.

The second step in the cycle is the actual normalization process. It is modelled
as a chain: at the beginning, the first normalizer in the chain is called and supplied
with the historical word form; if it finds a suitable normalization with a confidence
score above a pre-defined threshold, the chain is interrupted and processing con-
tinues with the next step (indicated in Fig. 1 by the dotted-line arrows). Otherwise,
the next normalizer in the chain is called. If all normalizers fail to produce an
acceptable result, the unmodified original word form is used as the normalization
candidate.

Afterwards, the normalization candidate is validated against the correct nor-
malization. In interactive mode, the user is prompted to either confirm the can-
didate form or correct it, while in training mode, the correct form is read directly
from the input file.

As the last step of the cycle, the training function of all normalizers is called,
with the historic word form and its (confirmed) modern equivalent as input. After
the normalizers have been trained, the cycle starts anew.

5 Evaluation

5.1 Corpora

For the evaluation, two different texts from ENHG were used: (1) the Luther bible
in its version from 1545 and a revised modern version of it; and (2) a manuscript
of the Anselm corpus from the Eastern Upper Germany dialectal area5 that was
manually normalized by a student assistant. A more detailed description is given
in Bollmann et al. [4].

5The depository of the manuscript is Melk, Austria.

 8



Luther Anselm

Training Total tokens 218,504 — 500 —

Evaluation
Total tokens 109,258 (100.00%) 4,020 (100.00%)

Identical tokens 71,163 (65.13%) 1,512 (37.61%)
Maximum accuracy 103,409 (94.65%) 3,760 (93.53%)

Table 1: General corpus statistics, split up by training and evaluation part.
“Identical tokens” are counted between the original text and its modern version;
“maximum accuracy” gives the highest accuracy that can be achieved with context-
free normalization methods.

Table 1 shows some general corpus statistics. The Luther bible is a com-
paratively large text, with 109,258 tokens in the evaluation part, and is relatively
close to its modern version: 65% of all tokens in the historical version are already
identical to their modern counterparts. This figure serves as the baseline for the
evaluation. The Anselm text, on the other hand, is much smaller (4,020 tokens)
and shows a lot more variance in spelling. While the size of the Luther text—
and the training part in particular—makes it more suitable for training automatic
normalization methods, the Anselm text is closer to actual research scenarios: texts
with a high variance in spelling, and without a reasonable amount of training data
available (if any).

It is also interesting to note the maximum achievable accuracy, which is around
94% for both texts. All methods evaluated in this paper are context-free, i.e., they
operate on word forms in isolation. Consequently, source tokens of the same type
will be assigned identical normalizations. However, the same type can be aligned
with more than one target token: a typical example is the historical jn mapped to
either in ‘in’ or ihn ‘him’, depending on context. In this case, it is impossible to
achieve perfect accuracy using context-free methods. Therefore, the “maximum
accuracy” in Table 1 represents the accuracy that would be achieved if each type
was normalized to the token it is most often aligned with.

5.2 Evaluation procedure

Five normalization methods were evaluated: rule-based normalization (Sec. 2),
standard Levenshtein distance (Sec. 3), FlexMetric (Sec. 3.1), MultiWLD (Sec. 3.2),
and a wordlist mapper. The mapper simply learns word-to-word substitutions from
training data without any notion of character distance. If a word form can be
mapped to multiple modern word forms, the mapping with the highest frequency
is used; in case of a tie, the mapping that was learned first is chosen.

Parametrization for the rule-based method and the wordlist mapper has been
learned from separate training parts of the texts as shown in Table 1. For FlexMetric
and MultiWLD, parametrization was created by hand after inspection of at most

 9



500 tokens from the training part of each text. As an example, characters groups
learned from Luther that were assigned the lowest costs are {u, v} and {i, j}, while
the most common insertions/deletion were of ‘e’ and ‘h’. This method is, of course,
a highly subjective one and should only be seen as a first experiment on whether
a reasonable parametrization can be created by manual inspection of a small text
fragment alone.

For the target lexicon, I used the complete vocabulary of the modern Luther
bible complemented by a full-form lexicon of all simplices generated by the Ger-
man morphology DMOR (Schiller [13]).

In addition to the separate evaluation of each method, each possible chain
combination (cf. p. ) has been evaluated. Threshold for confidence scores was
set to 0, i.e., unless the normalizer failed to find a normalization, any generated
normalization candidate was accepted as the final result. As a consequence, chains
in this test setup can consist of three elements at maximum, as the distance-based
measures can never fail to find a normalization candidate.

All methods have been implemented as normalizer modules for Norma (cf.
Sec. 4.2). Evaluation was done using Norma’s training mode to produce parameter
files for the rule-based method and the wordlist mapper, and batch mode to process
the evaluation texts.

5.3 Results

Evaluation results are shown in Table 2. For the Luther text, the simple wordlist
mapper performs best in isolation, achieving an accuracy of 92.60%, with the
rule-based approach and MultiWLD being only slightly worse. This is a no-
table result for the adaptable (or “trained”) distance measures in particular, as
their parametrization was compiled manually and with much less training data.
Combining the approaches yields an even better performance, up to a maximum
of 93.72% when the mapper is used first, the rule-based approach second, and
either MultiWLD or FlexMetric last. However, any chain that starts with the
wordlist mapper results in a comparable score, making it hard to determine a single
“best” combination here. It should be noted that these scores are very close to
the maximum accuracy of 94.65%, showing that these approaches—and the chain
configurations in particular—are almost optimal for the Luther text.

Results for the Anselm text are considerably worse than for Luther; again, this
is to be expected, as the baseline is significantly lower (37.61%). Additionally,
much less training data was used for the mapper and the rule-based method. Their
scores fall below those of the trained distance measures, with MultiWLD now
achieving the best accuracy (67.91%) and FlexMetric following close behind. This
suggests that trained distance measures outperform both wordlist mappings and the
rule-based approach when only a small amount of training data is available.

Combining methods results in an even bigger increase in accuracy with the
Anselm text. The best result (73.63%) is achieved by using only the mapper
and MultiWLD, although the configuration that was best for the Luther text also

 10



Luther Anselm

Baseline 71,163 (65.13%) 1,512 (37.61%)

Mapper 101,170 (92.60%) 2,448 (60.90%)
Rule-based 98,767 (90.40%) 2,530 (62.94%)
MultiWLD 96,510 (88.33%) 2,730 (67.91%)
FlexMetric 92,353 (84.53%) 2,655 (66.04%)

Levenshtein 87,619 (80.19%) 2,161 (53.76%)

Mapper→ Rule-based→ MultiWLD 102,193 (93.53%) 2,947 (73.31%)
Mapper→ Rule-based→ FlexMetric 102,193 (93.53%) 2,947 (73.31%)

Mapper→ Rule-based→ Levenshtein 102,160 (93.50%) 2,793 (69.48%)
Mapper→ MultiWLD 102,131 (93.48%) 2,960 (73.63%)
Mapper→ FlexMetric 102,118 (93.47%) 2,911 (72.41%)

Mapper→ Levenshtein 101,867 (93.24%) 2,705 (67.29%)
Rule-based→ Mapper→ MultiWLD 98,890 (90.51%) 2,829 (70.37%)
Rule-based→ Mapper→ FlexMetric 98,890 (90.51%) 2,800 (69.25%)

Rule-based→ Mapper→ Levenshtein 98,857 (90.48%) 2,675 (66.54%)
Rule-based→ MultiWLD 98,890 (90.51%) 2,815 (70.02%)
Rule-based→ FlexMetric 98,890 (90.51%) 2,785 (69.28%)

Rule-based→ Levenshtein 98,857 (90.48%) 2,660 (66.17%)

Table 2: Accuracies after normalization, with methods evaluated both separately
and combined as a chain. “Baseline” gives the accuracy before normalization for
comparison. Best results are highlighted in bold.

shows a similar performance here. Again, a clear “winner” cannot be determined.
However, the tendency that the wordlist mapper should come first in the chain
holds equally for the Anselm text as for Luther, despite the comparatively bad
performance of the mapper on Anselm when used in isolation.

Untrained Levenshtein distance always performs worst, which is especially
apparent in the separate evaluation. This suggests that it should probably never be
used for the normalization task, or at least not in isolation, as a list of edit weights
compiled from even a small input sample gives significant boosts in accuracy.

6 Comparison to VARD 2

A well known interactive tool for normalization of historical texts is VARD 2
(Baron and Rayson [2]). It was designed for use with Early Modern English texts
and also combines different normalization methods. VARD is written in Java and
is freely available for academic research.6

In contrast to Norma, VARD features a graphical user interface for interactive
processing of texts. When a text is loaded into the tool, historical spelling variants
are automatically detected and highlighted. Right-clicking on a variant word form

6http://www.comp.lancs.ac.uk/~barona/vard2/

 11



shows a list of suggested normalization candidates; the user can choose to either
normalize all occurrences of a word form or one particular instance only. VARD
clearly offers much more convenience here. However, its approach is not function-
ally different, i.e., the same kind of user interface and functions could also be built
on top of Norma.

The biggest difference between the tools, however, lies in the customizability
of the normalization methods. VARD combines four different methods: ‘known
variants’, which is similar to the wordlist mapper described in Sec. 5.2; ‘letter
replacement’, which applies a list of letter replacement rules to a word; ‘phonetic
matching’, which uses a modified Soundex algorithm to find modern word forms
that are phonetically similar to the input word; and standard edit distance. Addi-
tionally, all candidate word forms are matched against a modern lexicon.

This set of normalization methods is fixed and can be neither reduced nor
extended. Also, while some of these components can be modified, the phonetic
matching algorithm is hard-coded to the phonetics of English and can neither be
changed nor completely turned off. Consequently, when working with texts in
other languages, this algorithm is most likely to produce incorrect results. Norma,
on the other hand, places no restrictions on the use and combination of normalizers,
which should enable an easier adaption to different languages.

Nevertheless, there has been work on adapting VARD to other languages, such
as Portuguese (Hendrickx and Marquilhas [8]). To be able to compare VARD’s
performance with Norma’s, a similar adaption has been tried for the German data.
To this end, VARD has been given the same modern lexicon and the same letter re-
placement rules as the MultiWLD algorithm in the former evaluation (cf. Sec. 5.2).
The training part of each text was then used to run VARD’s training mode. Finally,
batch mode with a threshold of 0%7 was used to normalize the evaluation parts.

Final accuracies were 91.19% (Luther) and 69.38% (Anselm), both worse than
the best scores in the evaluation with Norma (cf. Table 2). However, VARD
performed better on the Anselm text than any normalization method in isolation.
Interestingly, it performed worse on Luther than the wordlist mapper alone, despite
having learned the same mappings from the training text.

7 Related Work and Outlook

Previous work on historical spelling variation tends to focus on the task of in-
formation retrieval (IR), which is basically reverse to normalization: finding his-
torical variants that correspond to a modern input string (e.g., Baron et al. [3],
Ernst-Gerlach and Fuhr [6], Hauser and Schulz [7]). It is unclear how well these
approaches translate to the normalization task with a view to further processing of
the data by NLP tools such as POS taggers.

7The threshold is the minimum F-score required for a normalization candidate to be used; a setting
of 0% ensures that all variant word forms will be normalized, which is closest to the behaviour of
Norma. Also, the default setting of 50% was found to perform significantly worse.

 12



For future work, more distance measures could be included in the evaluation.
Zobel and Dart [14] test different methods in the context of spelling correction
and name matching, and find an n-gram string distance to be effective. Jurish
[9] uses token context information and a combination of different methods via
a hidden Markov model to normalize historical German, achieving high perfor-
mance, though also evaluated as an IR task. Context information has not yet been
considered for Norma, but is a possible line of future research.

Incremental learning is a core feature of Norma, but has so far been neglected in
the evaluation. Parameter sets for FlexMetric and MultiWLD have been compiled
manually with good results; it remains to be tested whether similar results can
be achieved when learning parameters automatically from training data, and if so,
how much training data is needed. Adesam et al. [1] describe a pilot study using
automatically extracted replacement rules with promising results.

Finally, normalization also bears similarities to machine translation, in which
words (to be normalized) correspond to sentences (to be translated) and charac-
ters correspond to words. This is especially apparent in the rule-based method
(cf. Sec. 2) where character identities must be learned in the same way as sub-
stitutions, and where context information is taken into account, similar to the
implementations of statistical translation models.

8 Conclusion

In this paper, several approaches to normalization were discussed and evaluated
against two different historical texts. When used in isolation, the rule-based method
and a simple wordlist mapper performed best on the Luther text, where a large
amount of training data was available. Trained distance measures performed best
on the Anselm text, where only a small amount of training data was used and
which showed considerably more variation in spelling. In all cases, a combination
of these methods proved to be best, achieving an accuracy of up to 93.72% for
Luther and 73.63% for Anselm. In particular, the results showed that integrating a
simple word-to-word mapper always increased accuracy.

Evaluation was performed using Norma, an interactive normalization tool which
is easily extensible and more flexible than the comparable VARD tool. Norma
was used here for its capability of employing, training, and combining different
normalization methods, though the possibility of semi-automatic normalization
using incremental learning techniques remains to be explored further.

References

[1] Yvonne Adesam, Malin Ahlberg, and Gerlof Bouma. bokstaffua, bokstaffwa,
bokstafwa, bokstaua, bokstawa. . . Towards lexical link-up for a corpus of Old
Swedish. In Proceedings of KONVENS 2012 (LThist 2012 workshop), pages
365–369, Vienna, Austria, 2012.

 13



[2] Alistair Baron and Paul Rayson. VARD 2: A tool for dealing with
spelling variation in historical corpora. In Proceedings of the Postgraduate
Conference in Corpus Linguistics, 2008.

[3] Alistair Baron, Paul Rayson, and Dawn Archer. Automatic standardization
of spelling for historical text mining. In Proceedings of Digital Humanities
2009, Maryland, USA, 2009.

[4] Marcel Bollmann, Florian Petran, and Stefanie Dipper. Applying rule-based
normalization to different types of historical texts — an evaluation. In
Proceedings of LTC 2011, pages 339–344, Poznan, Poland, 2011.

[5] Thorsten Brants. TnT — a statistical part-of-speech tagger. In Proceedings
of ANLP 2000, pages 224–231, Seattle, USA, 2000.

[6] Andrea Ernst-Gerlach and Norbert Fuhr. Generating search term variants for
text collections with historic spellings. In Proceedings of the 28th European
Conference on Information Retrieval Research (ECIR 2006). Springer, 2006.

[7] Andreas W. Hauser and Klaus U. Schulz. Unsupervised learning of edit
distance weights for retrieving historical spelling variations. In Proceedings
of FSTAS 2007, pages 1–6, Borovets, Bulgaria, 2007.

[8] Iris Hendrickx and Rita Marquilhas. From old texts to modern spellings: an
experiment in automatic normalisation. JLCL, 26(2):65–76, 2011.

[9] Bryan Jurish. More than words: using token context to improve canon-
icalization of historical German. Journal for Language Technology and
Computational Linguistics, 25(1):23–39, 2010.

[10] Sebastian Kempken. Bewertung historischer und regionaler Schreibvarianten
mit Hilfe von Abstandsmaßen. Diploma thesis, Universität Duisburg-Essen,
2005.

[11] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[12] Silke Scheible, Richard J. Whitt, Martin Durrell, and Paul Bennett.
Evaluating an ‘off-the-shelf’ POS-tagger on Early Modern German text. In
Proceedings of LaTeCH-2011, pages 19–23, Portland, USA, 2011.

[13] Anne Schiller. Deutsche Flexions- und Kompositionsmorphologie mit PC-
KIMMO. In Roland Hausser, editor, Proceedings of the first Morpholympics,
Tübingen, 1996. Niemeyer.

[14] Justin Zobel and Philip Dart. Finding approximate matches in large lexicons.
Software: Practice and Experience, 25(3):331–345, 1995.

 14


