Studies for Segmentation of Historical Texts:
Sentences or Chunks?

Florian Petran

Department of Linguistics
Ruhr-Universitidt Bochum
E-mail: petran@linguistics.rub.de

Abstract

We present some experiments on text segmentation for German texts aimed
at developing a method of segmenting historical texts. Since such texts have
no (consistent) punctuation, we use a machine learning approach to label to-
kens with their relative positions in text segments using Conditional Random
Fields. We compare the performance of this approach on the task of seg-
menting of text into sentences, clauses, and chunks, and find that the task
gets easier, the smaller grained the target segments are.

1 Introduction!

Text segmentation is an important part of the natural language processing pipeline.
Not only is it an important target for corpus annotation, since the sentence and
constructions on the sentence level are subject to research, it is also an important
pre-processing step for a lot of other annotations that presuppose a segmented text.
Tasks such as bitext alignment or part-of-speech tagging either require a segmented
text, or work better or faster with pre-segmentation.

Segmenting text into sentences is usually seen as a task of disambiguating
punctuation marks, and there are several systems that perform that task well. But
what if a text has no or no consistent punctuation to indicate sentence boundary?
Syntactically motivated punctuation was not used until well in Early Modern times
for European languages, or even as late as the 19th century for Chinese texts. Any-
one working with historical texts will therefore be faced with the problem of having
to manually annotate for sentence segmentation which is a non-trivial, time con-
suming task. Spoken language faces similar problems as well, but it has intonation
features as indicators of sentence breaks, something which is largely absent in his-
torical texts.

I'The research reported here was financed by Deutsche Forschungsgesellschaft (DFG), Grant DI
1558/4-1.

75

There is already some related work on Chinese sentence segmentation, and
spoken language segmentation (see section 2 below). Based on those results, this
paper introduces experiments with segmentation of modern German language data
using Conditional Random Fields (Lafferty et al. [5]) without the use of punctua-
tion marks. They are aimed at developing a method of segmenting historical texts.
In the results, we find that a chunking approach works far better than the sentence
segmentation, which suggests that it would be prudent to do the sentence segmen-
tation based on the chunks determined.

The paper is organized as follows. Section 2 introduces approaches this work
is based on. The data used for the experiments, and the method used to obtain it
is described in section 3. Section 4 describes the experiments, their results, and
the method of evaluation. Finally, section 5 offers some concluding thoughts and
directions for future research.

2 Related Work

Most sentence segmentation systems for Western languages rely on the presence of
periods in the text. These need to be disambiguated between sentence terminating
punctuation symbols, and punctuation in other functions such as abbreviations. In
that, systems such as Gillick [2] achieve very good results with F-scores well over
90%. However, the solutions are not transferrable to a situation where punctuation
is inconsistent, or entirely absent.

One such situation is spoken language data, where capitalization or punctuation
do not exist at all. For such cases, a machine learning approach is used to classify
tokens according to whether they constitute a sentence boundary or not (such as in
Stevenson and Gaizauskas [10]). More recent approaches achieve good results with
Hidden Markov Models or Conditional Random Fields (Liu et al. [6],[7]), but they
use prosodic information such as timing, energy, or pitch as additional features.
With the NIST SU detection data set, there is an established gold standard data set
that is used by many researchers. No such data set exists for historical or modern
German.

One of the key features of speech data is that it is not always straightforward to
segment into sentences, since a sentence in spoken language is not as well defined
as in written language: due to their spontaneous nature, spoken sentences may be
interrupted, or syntactically incomplete. Furthermore, even in written language
it is often subjective if a comma or a period should be used at a given point in
the text. For research on spoken language data, this is approached with the def-
inition of sentential units that are annotated in the transcribed data instead. An
inter-annotator agreement of 93% for the NIST SU detection task (Liu et al. [6])
shows that even the manual annotation is not a trivial task. Spoken language data
bears some similarity to historical texts in that the transcription is another poten-
tial source of error, whereas historical language has the normalization of spelling
variants as error source. However, the key difference is that prosodic information,

76

used by all newer approaches to speech segmentation, is not available for historical
texts.

Another important difference is that spoken language research focuses mostly
on English, which has a relatively fixed word order. The results are thus not en-
tirely transferrable to a language with more free word order, such as German. Nev-
ertheless, an important result from Liu et al. [7] that influenced the experiments
presented here is the improved performance of a CRF based system compared to
HMM or MaxEnt based ones.

In Chinese, punctuation was not commonly used until well in the 19th century,
and is often not used today in informal (Internet) communication (Huang et al. [3]).
Huang et al. [4] employ a setup very similar to the one used in this paper, where
CRF are used to label different data sources, and test different tagsets for sentence
breaks. In addition to POS tags they use phonetic representation of the words
indicating (among other things) the initial and final tone. It is worth noting that
even though they achieve F-scores of up to 83% on historical texts, modern Chinese
texts tend to have more complex sentences, and are therefore harder to segment and
they achieve far lower results on them. Obviously, the segmentation task is easier,
the simpler the units are.

3 Data Basis and Extraction Methods

So far, there are no complete historical treebanks of German that have suitable
annotation for all tasks. Instead, the data used for the experiments is extracted
from the Tiibinger Baumbank des Deutschen/Zeitungstext (TiibaDZ)?, a treebank
of about 65,000 sentences of German newspaper texts. Modern German uses cap-
italization to indicate nouns, but this is usually not the case for Early Modern Ger-
man. Additionally, an important property related to the task is the absence of (con-
sistent) punctuation. We therefore filtered the punctuation marks from the texts
and downcased all tokens, so as to simulate a historical text as closely as possi-
ble. Another important property of historical texts is frequent occurence of variant
spelling, which was not simulated. Instead, we assume a work environment where
all historical tokens are already mapped to their modern equivalent spellings.

3.1 Data Source and Sentence Segmentation Task

For the annotation of boundaries, we used the 5-tags set that performed best for the
Chinese segmentation task (Huang et al. [4]), described in Table 1.

As far as data extraction is concerned, the simplest possibility is to annotate the
boundaries of a sentence (S node) in the data. For this annotation we need not take
the parse tree into account and use no additional heuristics.

Zhttp://www.sfs.uni-tuebingen.de/tuebadz.shtml

77

Tag Meaning

Beginning of segment
Second token in segment
Middle of segment

End of segment
Singleton segment

wr DO

Table 1: 5-tags set for sentence segmentation.

S
|
SIMPX

[T SIMPX % ——awx—)

Die gesamte Wohnung brannte aus benachbarte Wohnungen wurden erheblich beschidigt

The entire apartment burned out neighboring apartments were considerably damaged

Figure 1: “The entire apartment burned out, neighboring apartments were severely
damaged.” — An example for embedded SIMPX with a straightforward solution.

3.2 C(Clause Extraction Task

Due to the recursive nature of clauses, their extraction from TiibaDZ is not as
straightforward. The TiibaDZ parse tree is annotated with categories for sim-
ple clauses, relative clauses, and paratactic constructions of simple clauses, all of
which are collectively referred to as SIMPX from here on. The extraction of these
requires some heuristics, which are further described on some simplified example
parse trees. First, a SIMPX node can itself contain other SIMPX nodes as the sim-
plified parse tree in Fig. 1 shows. For these cases, we decide to always use the
lowest SIMPX nodes, i.e. those further away from the root of the tree, and discard
the higher level clause for segment annotation purposes.

Since German has a relatively free word order, this heuristics is not in all cases
sufficient, as the example of a partial sentence in Fig. 2 shows. The simple clause
begins at the first token verantwortlich, and then continues from sei until the end
of the example. Beginning at the second token so up to AWO, however, is a paren-

S

T
NP —/_\ SIMPX /\

Verantwortlich so das Schreiben einer Mitarbeiterin der AWO sei die Landesvorsitzende Ute Wedemeier
Responsible according to the letter ~ofan employee of the AWO was the state chairwoman Ute Wedemeier

Figure 2: “According to the letter of an employee of the AWO, state chairwoman
Ute Wedemeier was responsible.”—An example of an embedded structure that is
not a simple clause by itself.

78

SMPX ——""
T —=SIMX

doch gesichert scheint daf Frauen aus anderen Griinden zur Flasche greifen als Mdinner

but sure seems that women for different reasons tothe bottle reach than men

Figure 3: “but it seems safe to say that women take to the bottle for different
reasons than men.” — A SIMPX node that contains another SIMPX, but also
terminals.

thetical NP that is independent of the simple clause, and therefore directly attached
to the root sentence node S. In this case, the heuristics of taking the smallest node
obviously does not suffice, since both nodes are siblings. So we have elements of
the sentence that are not part of any clause from a syntactic point of view.

For these cases we would extract the NP in the example as a clause on its
own. The way this was implemented was to gather all terminal symbols that were
not extracted as part of a clause, and regard them as a segment as long as they
were consecutive. Furthermore, the flat boundary annotation scheme is unable to
account for non-consecutive tokens in a segmental unit. Since we cannot reorder
the data, we extract the SIMPX in cases like these as two different segments, one
starting at sei up to the end, and one with verantwortlich as its only word.

Fig. 3 shows another (partial) example sentence from the corpus. If we apply
the rule to always use the smallest SIMPX in this case, we would be left with unas-
signed terminal symbols in the result, since the SIMPX starting at daf8 running up
to the end is embedded into the superordinate SIMPX, but there are also terminal
symbols. In order to not overcomplicate the heuristics, we applied the rules set
above straightforwardly in this case as well. This means that we extract all ter-
minals preceding the smaller SIMPX as a clause on their own, and the following
SIMPX as an independent clause. Overall, this means that the clause annotations
are less than perfect, since the nature of a parsed corpus makes it ill suited for a
shallow segmentation task.

3.3 Chunk Segmentation Task

Finally, we extracted chunks to compare the chunk segmentation task with the
sentence segmentation. Unfortunately, again, the TiibaDZ annotation is not always
well suited for a chunking task. Although there are node labels for verb phrases,
these are in fact used to annotate the verbal head of the phrase instead of the phrase
governed by the verb. We therefore excluded verb phrases from the extraction and
added another tag O to the tagset, indicating that a token is outside of an annotated
chunk. The chunks were extracted in a similar way to the SIMPX nodes, preferring
bottom most nodes for the extraction, with the following additions to the heuristics.

79

If a prepositional phrase was present, it was preferred over a noun phrase, and if
a noun phrase was present, it was preferred over an adjective phrase. The only
other phrases that are annotated in TiibaDZ are complex determiners and certain
adverbial phrases, but since these are always embedded in a predictable way, we
ignored them for the data extraction.

3.4 Data Properties

Table 2 shows the tag distributions for each task. Obviously, the number of L1
and R tags is always the same because a segment starting with an L1 tag has to be
always closed by an R tag. The difference between the amount of tokens tagged
L1 and L2 indicates the amount of segments that are longer than two tokens: a
two token segment only has L1 and R tags, and only segments with three or more
tokens have the L2 tag. The difference between the amount of L2 and M tagged
tokens indicate the amount of segments that are longer than three tokens, because
only those would have the M tag, but also how likely it is that these segments are
exactly four tokens, or longer.

L1 L2 M R S O
Sentence 6.4954% 6.2716% 80.5324% 6.4954% 0.2052% -
Clause 14.1560% 12.5402% 57.3251% 14.1560% 1.8226% -
Chunk 19.1940% 11.1127% 18.8499% 19.1940% 9.1268% 22.5482%

Table 2: Relative frequencies of the boundary tags in % of 832,975 tokens. Most
frequent tags for each task are bold face. The leftmost column indicates the task.

For the sentence segmentation task, the number of L1 and L2 tags is roughly
the same, which indicates that there are only few two token segments—incidentally
about the same number as one token segments (tagged S). The vast majority of
tokens is tagged M, which indicates that most segments are well over four tokens
long. For the clause segmentation task, the number of two token segments is,
again, roughly the same as the number of one token segments, but there are a lot
more of both categories. Compared to the sentence task, there is a lower proportion
of M tags, again unsurprisingly, as the segments are relatively shorter, since they
are subsegments of sentences. The chunk segmentation task has a much more
even distribution of tags, with a small majority of tokens tagged O (for outside of
chunk). The relative numbers of L1 and L2 tags indicate that a little less than half
the segments are only two tokens long. But for those that are at least three tokens
long, there is a high probability that they are either four tokens or longer.

4 Results and Evaluation

4.1 Evaluation Method

All the following results were obtained using 5-fold cross validation, averaging the
results over all folds. The corpus was split along the sentence boundaries closest

80

to one fifth of the tokens, such as to minimize noise in the data. Training and ap-
plication of the model was done using the CRF++ toolkit? with the default feature
template, token and POS tag as feature, a minimum feature frequency of 2 and the
default cost function of 1.0. All test and training data was converted to lower case.

In addition to testing with the gold standard POS data, we also annotated the
test data with the TreeTagger (Schmid [9]) which ships with a parameter file for
German. This was done to more closely simulate real world conditions, where text
segmentation is hardly done on texts with manually corrected POS tags. Since the
parameter file for the tagger expects mixed case input, we used the original, mixed
case tokens for tagging and downcased them afterwards. However, explorative
experiments suggest that tagging performance loss by retraining a German tagger
on downcased data is negligible.

With a set of less than six tags, tagging accuracy has a fairly high baseline for
the most frequent tag assumption. Evaluating tag accuracy as a percentage of cor-
rect tags is therefore not a very meaningful indicator of the overall performance of
the system. Instead, we evaluated precision and recall for the segment boundaries
in the text. This was determined as follows. If a token was tagged as the start
of a segment, and if the immediately preceding token was tagged as the end of a
segment, a boundary was assumed to be present between the tokens. Note that this
means that the evaluation for the sentence tagset is theoretically slightly stricter
than for the IOB tagset, since it relies on two tags being correct rather than just
one. In practice, this does not matter so much, since the system reliably learned the
correct sequence of boundary tags in all cases. A baseline for this evaluation ap-
proach is difficult to determine, and any random guessing baseline would be fairly
low. For the purpose of this paper, however, it does not matter as much, since our
focus is on the comparison of relative difficulties of the different tasks.

Where applicable, O-tagged tokens were counted in the same way as singleton
phrases. Of course this means that a theoretical baseline is different for all tasks
below (see section 3.4). The smaller the units that are tagged, the less M tagged
tokens and the more S and O tagged ones appear. But none of the correct M
tags count towards the performance reported below, since they are always negative
categorizations.

4.2 Sentence Segmentation Task

The results for the sentence segmentation task are shown in Table 3. They are better
than could be expected by random guessing, but certainly not good enough for real
world application in this form. It seems that this task is especially sensitive to
only slightly erroneous POS tags, so we performed an additional experiment with
a simpler template using only the surface token as feature. If we compare those
results to the results with generated tags, we notice, again, a marked decrease in
overall performance, but not as much as from the gold POS tags to the generated

3http://crfpp.googlecode.com/

81

tags. In fact, the precision is even slightly higher without the tags.

Precision Recall F-score
Gold POS Tags 71.57% 59.13% 64.76%
Generated POS 63.27% 48.72% 55.04%
Without POS 63.75% 40.15% 49.27%

Table 3: Results for the sentence extraction task.

The likely reason for the poor performance of this task is that sentence bound-
aries are, to some degree, subjective. It is often a matter of style if a writer uses a
full stop, a comma, or a semicolon at a given point. This has a detrimental effect
mainly on recall, as it is difficult to find all cases that had full stops in the original
text, but it also effects the overall performance negatively, because many items in
the training data are learned as in the middle of a sentence when they might as
well have been the first token in a sentence. The comparatively higher precision
suggests that a bootstrapping approach could possibly improve performance. The
small effect of the generated POS tagging indicates that this might work even for
a text where tagging proves difficult and could, in fact, be potentially used to im-
prove tagging performance. But before such enhancements are considered, a more
detailed error analysis would have to be done.

4.3 Clause Segmentation Task

For the simple clause boundary annotation task shown in Table 4, the performance
is much better. This is especially remarkable given the tradeoffs from our clause
extraction heuristics described in Sec. 3. Obviously, simple clause boundaries are
easier to learn than sentence boundaries, even with noisy data. The noise also
seems to affect recall slightly more than precision. In a real world application,
such a task might benefit from annotation of sentential units instead of clauses or
sentences, such as described in LDC [1].

Precision Recall F-score
Gold POS Tags 83.00% 69.37% 75.57%
Generated POS 73.60% 58.67% 65.29%
Without POS 71.07% 54.44% 61.65%
Simplified data 88.25% 79.46% 83.72%

Table 4: Results for the clause extraction task.

The last line of Table 4 shows the results with gold tags for an idealized setting
were only continuous SIMPX consisting of nothing but terminals were extracted.
Note that this is not entirely comparable to the other rows, since the source data
was adjusted, but it shows how performance might improve for an ideal language
that did not force difficult decisions such as the ones described in Sec. 3 upon us.
The effect this has on recall is roughly twice as high as the effect on precision. This

82

shows that even for the noisy data, the system learned the right clues reliably, but
was less able to apply them in all cases.

4.4 Chunk Segmentation Task

For the chunking task, we did an additional run of the experiments with the IOB
tagset commonly used for chunking (Ramshaw and Marcus [8]). The IOB tagset
only knows annotations for a position in- or outside of a chunk (I and O respec-
tively), or starting a new chunk (B). The experiments done by Huang et al. [4]
suggest that the 5-tags set performs best, but they do not evaluate its performance
on chunking, or the IOB tagset.

As Table 5 shows, the chunking task yields very good results for both tagsets.
The 5-tags set task outperforms the IOB tagset by a small margin. As the quality
of the POS annotation decreases, however, the gap between the two annotation
schemes shrinks slightly. It is also noteworthy, that the chunking task is far less
sensitive to the quality, or in fact the presence of POS annotation than the other
tasks, for both annotation schemes, and even slightly less so for the sentence tagset.

5 tagset IOB tagset
Precision Recall F-score Precision Recall F-score
Gold POS Tags 92.72% 94.90% 93.79% 91.82% 94.77% 93.27%
Generated POS 91.19% 90.78% 90.98% 90.37% 92.710% 91.52%
Without POS 90.79% 88.87% 89.82% 88.36% 89.07% 88.71%

Table 5: Results for the chunking task using the extended 5-tags set and the IOB
tagset, and gold or generated POS data respectively.

Of the three tasks examined here, the chunking task is the only one where recall
is higher than precision, if only by a small margin, but recall is also more affected
by the POS annotation quality than precision. In any case, and for both annotation
schemes, the chunking task yields good results even with non-optimized, standard
settings for the learning program.

4.5 Error Analysis

Tables 6, 7, and 8 show the confusion matrices for the sentence, clause, and chunk
segmentation tasks respectively. All matrices were generated for the results with
gold POS tags. They show that all tasks perform far better a random guessing sce-
nario, and for almost all tags and tasks, the correct guess is the vast majority. For
the sentence and chunk segmentation tasks, all tags have a relatively high proba-
bility of confusion with the M tag, which is to be expected since it is by far the
most frequent in those tasks. The low probability of confusion of the L1, L2, and
R tags with each other show that where the system guessed the boundary wrong,
it was not off by just one or two positions, but generally did not recognize that a
boundary was present at all, tagging M instead. So far, this is exactly what should
be expected.

83

Expected

L1 L2 M R S
L1 31514 (58.78%) 535 (1.04%) 11972 (1.01%) 349 (0.65%) 378 (22.13%)
3 L2 646 (1.20%) 30114 (58.60%) 11816 (1.79%) 867 (1.63%) 44 (2.58%)
2 M 20872(38.93%) 20058 (39.03%) 624645 (94.62%) 20420 (38.29%) 497 (29.10%)
< R 389 (0.73%) 674 (1.31%) 11650 (1.76%) 31630 (59.32%) 204 (11.94%)
s 195 (0.36%) 9 (0.02%) 55 (0.01%) 58(0.11%) 585 (34.25%)

Table 6: Confusion matrix for the sentence segmentation task. Cells indicate the
number of guesses for the category denoted by the row, the percentage is of the
row total. Correct results are bold faced.

Expected
L1 L2 M R S
L1 82300 (70.36 %) 2772 (2.69%) 12283 (2.62%) 1908 (1.64%) 2991 (20.05%)
= L2 4052 (3.46%) 73995 (71.82%) 118818 (2.52%) 3637 (3.12%) 461 (3.09%)
E M 27232 (23.28%) 23907 (23.21%) 431551 (92.07%) 27447 (23.56%) 3919 (26.27%)
< R 1768 (1.51%) 2217 (2.15%) 12256 (2.61%) 82614 (70.90%) 3036 (20.35%)
S 1626 (1.39%) 134 (0.13%) 825 (0.18%) 915 (0.79%) 4510 (30.23%)

Table 7: Confusion matrix for the clause segmentation task.

Concerning the singleton segment S tag for the sentence task, if we disregard
the confusion with M, the system fairly frequently confused it with L1. This in-
dicates that it often correctly identified a sentence starting at that position, but
incorrectly guessed the length of that sentence. Overall, the S tag has the low-
est accuracy in that task, probably because it is very rare in the training corpus.
The difference is even smaller for the clause segmentation task, where the correct
guesses for S only barely outweigh the L1 guesses. This is in spite of the fact that
the S tag for clauses is far more frequent than for sentences, though still compara-
tively rare. The likely source of that problem are the problems with data extraction
for clauses described in Sec. 3.2. Since a lot of S tagged tokens are not actually
singleton segments, but instead part of discontinuous clauses, it was difficult to
learn them reliably. This is confirmed by the far better results for this task on the
idealized data as described in the bottom row of Table 4.

Expected

L1 L2 M R S [¢]

LI 112679 (88.92%) 1775 (2.48%) 10166 (8.32%) 227 (0.18%) 1190 (2.00%) 1233 (0.82%)

_ L2 1359 (1.07%) 60486 (84.35%) 6676 (5.46%) 2576 (2.05%) 161 (0.27%) 328 (0.22%)
El M 8544 (6.74%) 5579 (7.78%) 88104 (72.11%) 7966 (6.32%) 1401 (2.35%) 2143 (1.43%)
£ R 200 (0.16%) 2906 (4.05%) 10506 (8.60% 109891 (87.25%) 2145 (3.60%) 944 (0.63%)
S 1343 (1.06%) 223 (0.31%) 2281 (1.87%) 2161 (1.72%) 53946 (90.66 %) 67 (0.04%)

[¢] 2600 (2.05%) 742 (1.03%) 4440 (3.63%) 3131 (2.49%) 663 (1.11%) 145220 (96.86 %)

Table 8: Confusion matrix for the chunk segmentation task.

The confusion matrix for the chunk segmentation task shows the lowest accu-
racy for the M tag, which is mildly surprising since it is not all that infrequent in
the data. On the other hand, the tag frequencies are much more balanced overall
for this task, so any effect of tag frequency would be smaller overall. One factor
that is not accounted for at all by the results reported in Sec. 4.4 is the remarkably
small confusion between O and S. Any such confusion would not be counted as
word boundary error by our evaluation scheme described in Sec. 4.1, since they
both serve the same function with regards to the word boundary. This indicates
that a possible labeling of chunks with or after the segmentation could work well.

84

5 Conclusion

We have shown that it is generally possible to segment German text without the
use of punctuation marks. As the target units for segmentation become smaller,
this task becomes easier, to a point where it achieves results that would be suitable
as basis for manual correction in a real world application. Further improvements
might be achieved by optimizing the parameters for the CRF system. The reason
for this performance increase is likely that sentences are, to a degree, subjective,
and their segmentation dependent on individual style in many cases. Clause units
have fairly complex relations with each other and are therefore not easily captured
by a flat boundary annotation scheme.

Chunks on the other hand, as defined by the data extraction in Sec. 3, are simple
constituents of sentences that are easily objectively identifiable. This suggests that
instead of annotating sentences, it would be more efficient to first chunk the texts,
and then use those chunk boundaries to identify sentential unit breaks. Since the
chunks can never cross sentence boundaries, the sentence segmentation based on
the chunk boundaries would be reduced to the disambiguation of chunk boundaries,
similar to the way that written text is normally segmented. This is a far easier task
than segmentation of text without any indications of boundaries since it limits the
possibilities of where boundaries can be located.

One direction that needs to be explored for future research is the performance
of the system on an actual historical text. As mentioned above, these types of text
have large amounts of variant spellings that need to be normalized for a model
trained on modern German to be applicable. Such a normalization step would
introduce an additional source of error to both POS tagging and the segmentation,
so it needs to be clarified how large the impact of an additional error source on
the overall system will be. Alternatively, the segmentation model could be trained
on non-normalized historical data. For this case, the effect on training corpus size
would need to be explored.

As an intermediate step, it would also be helpful to determine the performance
on a corpus that has annotations for verb chunks as well. We had to leave these
out of the experiments entirely because the TiibaDZ annotations do not allow an
extraction of verb chunks. Had VP annotation been present, we would have less
out of chunk elements, less word boundaries, and likely longer segments overall.

Furthermore, there are various improvements that could be made on the per-
formance of the system itself. For example, Liu et al. [7] report that a majority
vote between MaxEnt, HMM, and CREF classifiers performed better than each in-
dividual one for the task of spoken language segmentation. Such a majority vote
system would be computationally expensive, but not very hard to implement. An-
other possibility is a bootstrapping approach, suggested by the fact that for most
tasks, precision is far higher than recall.

Finally, another open question is the labeling of chunks, which would, ulti-
mately, be a desirable outcome of the chunk segmentation. There are basically two
different approaches to the shallow parsing task with regards to our segmentation

85

system. We could label the chunks after they have been segmented, or combine
the chunk labeling with the segmentation for a larger tagset. Each approach could
have its advantages, but discussing them is beyond the scope of this paper.

References

[1]

(2]

[5]

[10]

Linguistic Data Consortium. Simple metadata annotation specification ver-
sion 6.2. 2004.

Dan Gillick. Sentence boundary detection and the problem with the US.
In Proceedings of NAACL, pages 241-244. Association for Computational
Linguistics, 2009.

Hen-Hsen Huang and Hsin-Hsi Chen. Pause and stop labeling for chinese
sentence boundary detection. In Proceedings of RANLP, pages 146-153,
2011.

Hen-Hsen Huang, Chuen-Tsai Sun, and Hsin-Hsi Chen. Classical chinese
sentence segmentation. In Proceedings of CIPS-SIGHAN Joint Conference
on Chinese Language Processing, pages 15-22, 2010.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data.
In Proceedings of the International Conference on Machine Learning, pages
282-289, 2001.

Yang Liu, Nitesh V. Chawla, Mary P. Harper, Elizabeth Shriberg, and Andreas
Stolcke. A study in machine learning from imbalanced data for sentence

boundary detection in speech. Computer Speech & Language, 20(4):468—
494, 2006.

Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary Harper. Using
conditional random fields for sentence boundary detection in speech. In Pro-
ceedings of the 43rd Annual Meeting of ACL, pages 451-458. Association for
Computational Linguistics, 2005.

Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using
transformation-based learning. In Proceedings of the Third ACL Workshop
on Very Large Corpora, pages 82-94. ACL, 1995.

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees.
In Proceedings of International Conference on New Methods in Language
Processing, volume 12, pages 44-49, 1994.

Mark Stevenson and Robert Gaizauskas. Experiments on sentence boundary
detection. In Proceedings of the sixth conference on Applied natural language
processing, pages 84-89. ACL, 2000.

86

