Collocations

Seminário de Mestrado, 5 Dezembro

Michel Généreux

Some definitions

Multiword expression (MWE)

A multiword expression is a combination of two or more words whose semantic, syntactic, ... properties cannot fully be predicted from those of its components, and which therefore has to be listed in a lexicon.

Collocation $\sqrt{}$

A sequence of words or terms that co-occur more often than would be expected by chance. Can be extracted statistically.

Salience $\sqrt{}$

How representative an expression is within a specialized corpus. Can be extracted statistically.

Examples

```
MWE
  kick the bucket (idiom)
  throw <somebody> to the lions
Collocations
  strong tea
  the rich and famous
Salient expression
  a quality player
```

Collocation vs MWE

MWE

non-compositionality: semantically (semi-)opaque non-modifiability: syntactically rigid non-substitutability: lexically determined

Collocation

the constraints applied to MWE can be relaxed. Statistical approach works fairly well to find collocations.

Compositionality

- A phrase is compositional if the meaning can predicted from the meaning of the parts.
- Collocations are not fully compositional in that there is usually an element of meaning added to the combination. Eg. strong tea.
- Idioms are the most extreme examples of non-compositionality. Eg. to kick the bucket

Non-Substitutability

- We cannot substitute near-synonyms for the components of a collocation. For example, we can't say yellow wine instead of white wine even though yellow is as good a description of the color of white wine as white is
- Many collocations cannot be freely modified with additional lexical material or through grammatical transformations (Non-modifiability).

Collocational Window

- Many collocations occur at variable distances. A collocational window needs to be defined to locate these. Freq based approach can't be used.
 - she knocked on his door
 - they knocked at the door
 - 100 women knocked on Donaldson's big door
 - a man knocked on the metal front door

Principal Approaches to Finding Collocations

- Dictionary
- Selection of collocations by frequency
- Selection based on mean and variance of the distance between focal word and collocating word
- Mutual information

Collocations in Dictionaries: strength vs power

strength	power
to build up ~	to assume ~
to find ~	emergency ~
to save ~	discretionary ~
to sap somebody's ~	~ over [several provinces]
brute ~	supernatural ~
tensile ~	to turn off the ~
the \sim to [do X]	the ∼ to [do X]
[our staff was] at full ~	the balance of ~
on the ~ of [your recommendation]	fire ~

Frequency

- Finding collocations by counting the number of occurrences.
- Usually results in a lot of function word pairs that need to be filtered out.
- Pass the candidate phrases through a part of-speech filter which only lets through those patterns that are likely to be "phrases".

Frequency

$C(w^1 \ w^2)$	w^1	w^2	
80871	of	the	
58841	in	the	
26430	to	the	
21842	on	the	
21839	for	the	
18568	and	the	36 . 6 . 11
16121	that	the	Most frequent bigrams in an
15630	at	the	Evample Comus
15494	to	be	Example Corpus
13899	in	a	
13689	of	a	E f M Wl11 41
13361	by	the	Except for <i>New York</i> , all the
13183	with	the	bigrams are pairs of function
12622	from	the	digitalis are pairs of function
11428	New	York	words.
10007	he	said	Words.
9775	as	a	
9231	is	a	
8753	has	been	
8573	for	a	

Frequency

Tag Pattern Example

A N linear function

N N regression coefficients

A A N Gaussian random variable

A N N cumulative distribution function

NAN mean squared error

N N N class probability function

N P N degrees of freedom

Part of speech tag patterns for collocation filtering.

Frequency: filtering with POS patterns

$C(w^1 \ w^2)$	w^1	w^2	tag pattern
11487	New	York	ΑN
7261	United	States	ΑN
5412	Los	Angeles	NN
3301	last	year	ΑN
3191	Saudi	Arabia	NN
2699	last	week	ΑN
2514	vice	president	ΑN
2378	Persian	Gulf	ΑN
2161	San	Francisco	ΝN
2106	President	Bush	NN
2001	Middle	East	ΑN
1942	Saddam	Hussein	NN
1867	Soviet	Union	ΑN
1850	White	House	ΑN
1633	United	Nations	ΑN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	ΑN
1073	real	estate	AN

The most highly ranked phrases after applying the filter on the same corpus as before.

strong challenge vs powerful computer

w	C(strong, w)	w	C(powerful, w)
support	50	force	13
safety	22	computers	10
sales	21	position	8
opposition	19	men	8
showing	18	computer	8
sense	18	man	7
message	15	symbol	6
defense	14	military	6
gains	13	machines	6
evidence	13	country	6
criticism	13	weapons	5
possibility	11	post	5
feelings	11	people	5
demand	11	nation	5
challenges	11	forces	5
challenge	11	chip	5
case	11	Germany	5
supporter	10	senators	4
signal	9	neighbor	4
man	9	magnet	4

Mean and Variance

- The mean μ is the average offset between two words in the corpus.
- The variance σ²

$$\sigma^2 = \frac{\sum_{i=1}^{n} (d_i - \mu)^2}{n - 1}$$

where n is the number of times the two words co-occur, d_i is the offset for co-occurrence i, and μ is the mean.

Offset = nb words between two words + 1

Mean and Variance: Interpretation

- The mean and variance characterize the distribution of distances between two words in a corpus.
- We can use this information to discover collocations by looking for pairs with low variance.
- A low variance means that the two words usually occur at about the same distance.
- A negative mean indicates that they permute

Mean and variance

σ	μ	Count	Word 1	Word 2
0.43	0.97	11657	New	York
0.48	1.83	24	previous	games
0.15	2.98	46	minus	points
0.49	3.87	131	hundreds	dollars
4.03	0.44	36	editorial	Atlanta
4.03	0.00	78	ring	New
3.96	0.19	119	point	hundredth
3.96	0.29	106	subscribers	by
1.07	1.45	80	strong	support
1.13	2.57	7	powerful	organizations
1.01	2.00	112	Richard	Nixon
1.05	0.00	10	Garrison	said

Mean and Variance: An Example

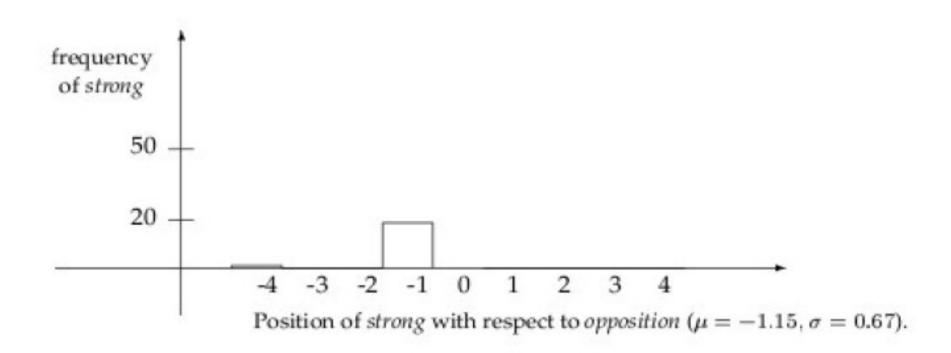
For the knock, door example sentences the mean is:

$$\frac{1}{4}(3+3+5+5) = 4.0$$

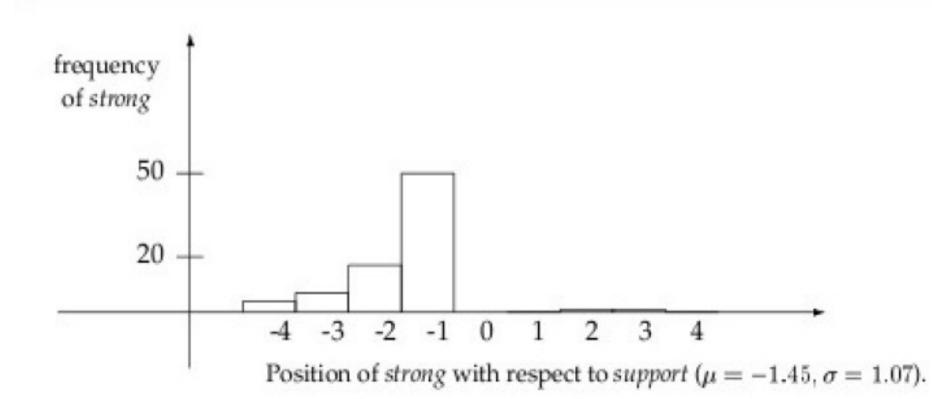
And the variance:

$$\sigma = \sqrt{\frac{1}{3} \left((3 - 4.0)^2 + (3 - 4.0)^2 + (5 - 4.0)^2 + (5 - 4.0)^2 \right)} \approx 1.15$$

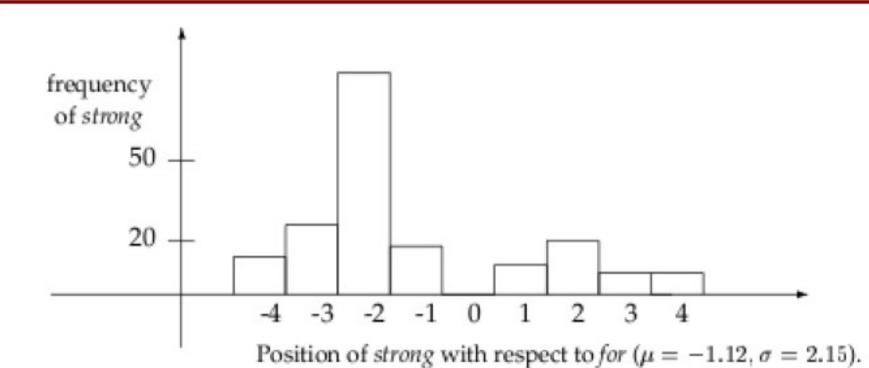
strong...opposition



strong...support



strong and for



Pointwise Mutual Information

- An information-theoretically motivated measure for discovering interesting collocations is pointwise mutual information (Church et al. 1989, 1991; Hindle 1990).
- It is roughly a measure of how much one word tells us about the other.
- It takes into account the fact that words can also co-occur by chance.
- Positive indicates co-occurrence
- Negative indicates that they tend not to co-occur

Pointwise Mutual Information (Cont.)

Pointwise mutual information between particular events x' and y', in our case the occurrence of particular words, is defined as follows:

$$I(x', y') = \log_2 \frac{P(x'y')}{P(x')P(y')}$$

$$= \log_2 \frac{P(x'|y')}{P(x')}$$

$$= \log_2 \frac{P(y'|x')}{P(y')}$$

PMI

$I(w^{1}, w^{2})$	$C(w^1)$	$C(w^2)$	$C(w^1 \ w^2)$	w^1	w^2
18.38	42	20	20	Ayatollah	Ruhollah
17.98	41	27	20	Bette	Midler
16.31	30	117	20	Agatha	Christie
15.94	77	59	20	videocassette	recorder
15.19	24	320	20	unsalted	butter
1.09	14907	9017	20	first	made
1.01	13484	10570	20	over	many
0.53	14734	13478	20	into	them
0.46	14093	14776	20	like	people
0.29	15019	15629	20	time	last

$$I(Ayatollah, Ruhollah) = \log_2 \frac{\frac{20}{14307668}}{\frac{42}{14307668} \times \frac{20}{14307668}} \approx 18.38$$

Corpus size = 14307668 words

PMI

I_{1000}	w^1	w^2	w^1w^2	bigram	I_{23000}	w^1	w^2	w^1w^2	bigram
16.95	5	1	1	Schwartz eschews	14.46	106	6	1	Schwartz eschews
15.02	1	19	1	fewest visits	13.06	76	22	1	FIND GARDEN
13.78	5	9	1	FIND GARDEN	11.25	22	267	1	fewest visits
12.00	5	31	1	Indonesian pieces	8.97	43	663	1	Indonesian pieces
9.82	26	27	1	Reds survived	8.04	170	1917	6	marijuana growing
9.21	13	82	1	marijuana growing	5.73	15828	51	3	new converts
7.37	24	159	1	doubt whether	5.26	680	3846	7	doubt whether
6.68	687	9	1	new converts	4.76	739	713	1	Reds survived
6.00	661	15	1	like offensive	1.95	3549	6276	6	must think
3.81	159	283	1	must think	0.41	14093	762	1	like offensive

Problems with MI (see previous slide)

Some collocations move up as we have more data

marijuana growing

Some non-collocations move down as we have more data

Reds survived

But still many bigrams with an inflated MI

- fewest visits
- Schwartz eschews

(Experiment with CQPweb)

Salience

Comparing frequencies: term salience The *Log-odds ratio*

 The log odds ratio measure compares the frequency of occurrence of each n-gram in a given specialized corpus with its frequency of occurrence in a reference corpus, where a is the frequency of a word in the specialized corpus, b is the size of the specialized corpus minus a, c is the frequency of the word in the general corpus and d is the size of the general corpus minus c. High positive log odds scores indicate strong salience, while high negative log odds scores indicate word irrelevant for the class.

$$r = ln(ad/cb) = ln(a) + ln(d) - ln(c) - ln(b)$$

Discriminative power

Tf-idf weighting

$$\mathsf{tf}\text{-}\mathsf{idf}_{t,d} = \mathsf{tf}_{t,d} \times \mathsf{idf}_t.$$
 $\mathsf{idf}_t = \log \frac{N}{\mathsf{df}_t}.$

tf-idf assigns to term t a weight in document d in a corpus of N documents that is:

- 1. highest when t occurs many times within a small number of documents (thus lending high discriminating power to those documents);
- 2. lower when the term occurs fewer times in a document, or occurs in many documents (thus offering a less pronounced relevance signal);
 - 3. lowest when the term occurs in virtually all documents.

Reference

•Foundations of statistical natural language processing, chapter 5, *Collocations*, C. D. Manning and H. Schutze

Practical session

Download assignment_ut-hood.tar.gz:

\$ wget http://alfclul.clul.ul.pt/crpc/curso/CL2012/files/collocations.tar.gz Unzip it:

\$ tar xvzf assignment_ut-hood.tar.gz

You will now have:

Five directories:

- /RC-en: a reference corpus in English
- /RC-pt: a reference corpus in Portuguese
- /Politics: a specialized corpus in English
- /Misterioso: a specialized corpus in Portuguese
- /lib: library of Perl programs

Three files: compute_salience.sh, idf.pl and mi.pl

A script and two programs

- compute_salience.sh: a script to compute the salience of expressions in a corpus
 - \$./compute_salience.sh -h
- idf.pl: a PERL program to compute the Inverse document frequency of terms
 - \$./idf.pl -h
- mi.pl: a PERL program to compute the Mutual Information value of collocations
 - \$./mi.pl -h

Salience on the English corpus

Compute the salience of n-grams from the specialized Politics corpus

- \$./compute_salience.sh en n Politics will create en_n_Politics.model
 - the salience values (r in the logg-odds ratio formula)
 en_reference_tok_fqs_n_Politics
 - n-gram token frequencies (c in the logg-odds ratio formula)
 en_specialize_tok_fqs_n_Politics
 - n-gram token frequencies (a in the logg-odds ratio formula)
 en_reference_doc_fqs_n_Politics
 - n-gram document frequencies (to compute IDF)
 - en_specialize_doc_fqs_n_Politics
 - n-gram document frequencies (to compute IDF)

Loking at the most/least salient terms

The most salient n-gram:

\$ head en_n_Politics.model

The least salient n-gram:

\$ tail en_n_Politics.model

The most/least frequent terms

The most frequent n-gram:

\$sort -k2gr en_specialized_tok_fqs_n_Politics | head

The least frequent n-gram:

\$sort -k2gr en_specialized_tok_fqs_n_Politics | tail

Terms appearing in most/least documents

The most frequent n-gram

\$sort -k2gr en_specialize_doc_fqs_n_Politics | head

The least frequent n-gram

\$sort -k2gr en_specialize_doc_fqs_n_Politics | tail

Inverse Document Frequency

The most discriminating n-grams:

\$./idf.pl en_specialize_doc_fqs_n_Politics | sort -k2gr | head

The least discriminating n-grams:

\$./idf.pl en_specialize_doc_fqs_n_Politics | sort -k2gr | tail

Finding interesting collocations (2 tokens only)

The most interesting collocations for the specialized corpus:

\$./mi.pl en_specialize_tok_fqs_1_Politics
en_specialize_tok_fqs_2_Politics | sort -k2nr | head

The most interesting collocations for the reference corpus:

\$./mi.pl en_reference_tok_fqs_1_Politics en_reference_tok_fqs_2_Politics | sort -k2nr | head